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Speech Denoising with Deep Feature Losses
François G. Germain, Qifeng Chen, and Vladlen Koltun

Abstract—We present an end-to-end deep learning approach to
denoising speech signals by processing the raw waveform directly.
Given input audio containing speech corrupted by an additive
background signal, the system aims to produce a processed signal
that contains only the speech content. Recent approaches have
shown promising results using various deep network architec-
tures. In this paper, we propose to train a fully-convolutional
context aggregation network using a deep feature loss. That
loss is based on comparing the internal feature activations in
a different network, trained for acoustic environment detection
and domestic audio tagging. Our approach outperforms the state-
of-the-art in objective speech quality metrics and in large-scale
perceptual experiments with human listeners. It also outperforms
an identical network trained using traditional regression losses.
The advantage of the new approach is particularly pronounced
for the hardest data with the most intrusive background noise,
for which denoising is most needed and most challenging.

Index Terms—Speech denoising, speech enhancement, deep
learning, context aggregation network, deep feature loss

I. INTRODUCTION

SPEECH denoising (or enhancement) refers to the removal
of background content from speech signals [1]. Due to the

ubiquity of this audio degradation, denoising has a key role in
improving human-to-human (e.g., hearing aids) and human-to-
machine (e.g., automatic speech recognition) communications.
A particularly challenging but common form of the problem is
the under-determined case of single-channel speech denoising,
due to the complexity of speech processes and the unknown
nature of the non-speech material. The complexity is further
compounded by the nature of the data, since audio material
contains a high density of data samples (e.g., 16,000 samples
per second). Challenges also arise in mediated human-to-
human communication, as perception mechanisms can make
small errors still noticeable by the average user [2].

In this work, we present an end-to-end deep learning
approach to speech denoising. Our approach trains a fully-
convolutional denoising network using a deep feature loss.
To compute the loss between two waveforms, we apply
a pretrained audio classification network to each waveform
and compare the internal activation patterns induced in the
network by the two signals. This compares a multitude of
features at different scales in the two waveforms. We perform
extensive experiments that compare the presented approach to
recent state-of-the-art end-to-end deep learning techniques for
denoising. Our approach outperforms them in both objective
speech quality metrics and large-scale perceptual experiments
with human listeners, which indicate that our approach is more
effective than the baselines. The advantages of the presented
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approach are particularly pronounced for the hardest, noisiest
inputs, for which denoising is most challenging.

A. Related Work

Before the popularization of deep networks, denoising
systems relied on spectrogram-domain statistical signal pro-
cessing methods [1], followed more recently by spectrogram
factorization-based methods [3]. Current denoising pipelines
instead rely on deep networks for state-of-the-art performance.
However, most pipelines still operate in the spectrogram do-
main [4]–[11]. As such, signal artifacts then arise due to time
aliasing when using the inverse short-time Fourier transform to
produce the time-domain enhanced signal. This particular issue
can be somewhat alleviated, but with increased computational
cost and system complexity [12]–[18].

Recently, there has been growing interest in the design of
performant denoising pipelines that are optimized end-to-end
and directly operate on the raw waveform. Such approaches
aim at fully leveraging the expressive power of deep networks
while avoiding expensive time-frequency transformations or
loss of phase information [19]–[22]. Some of these approaches
typically use simple regression loss functions for training the
network [19], [20] (e.g., L1 loss on the raw waveform), while
ones with more advanced loss functions have shown limited
gains in mismatched conditions [21], [22].

For our loss function, we are inspired by computer vi-
sion research, where activations in pretrained classification
networks were found to yield effective loss functions for
image stylization and synthesis [23], [24]. To compute the
loss between two images, these approaches apply a pretrained
image classification network to both. Each image induces a
pattern of internal activations in the network to be compared,
and the loss is defined in terms of their dissimilarity. Such
complex training losses have been shown to yield state-of-the-
art algorithms without the need for prior expert knowledge or
added complexity for the processing network itself. Further-
more, increased performance can be achieved even without
task-specific loss networks [25]. Our work develops this idea
in the context of speech processing.

II. METHOD

A. Denoising Network

Let x be an audio signal corresponding to speech ß that
is corrupted by an additive background signal n so that
x = ß + n. Our goal is to find a denoising operator g
such that g(x) ≈ ß. We use a fully-convolutional network
architecture based on context aggregation networks [26]. The
output signal is synthesized sample by sample as we slide the
network along the input. Context aggregation networks have
been previously used in the WaveNet architecture for speech
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synthesis [27]. Our architecture is simpler than WaveNet –
no skip connections across layers, no conditioning, no gated
activations – while our loss function is more advanced, as
described in Section II-B.

a) Context aggregation: Our network consists of 16
convolutional layers. The first and last layers (the degraded
input signal and the enhanced output signal, respectively) are
1-dimensional tensors of dimensionality N×1. The number
of samples N in the input signal varies and is not given in
advance. The signal sampling frequency fs is assumed to be
16 kHz. Each intermediate layer is a 2-dimensional tensor of
dimensionality N ×W , where W is the number of feature
maps in each layer. (We set W = 64.) The content of each
intermediate layer is computed from the previous layer via
a dilated convolution with 3× 1 convolutional kernels [26]
followed by an adaptive normalization (see below) and a
pointwise nonlinear leaky rectified linear unit (LReLU) [28]
max(0.2x, x). Because of the normalization, no bias term is
used for the intermediate layers. We zero-pad all layers so that
their “effective” length is constant at N . Our network is then
trained to handle the beginning and end of audio files even
when speech content is near the sequence edges.

The dilation operator aggregates long-range contextual in-
formation without changing sampling frequency across lay-
ers [26], [27]. Here, we increase the dilation factor exponen-
tially with depth from 20 for the 1st intermediate layer to 212

for the 13th one. We do not use dilation for the 14th and
last one. For the output layer, we use a linear transformation
(1× 1 convolution plus bias with no normalization and no
nonlinearity) to synthesize the sample of the output signal. The
receptive field of the pipeline is 214 + 1 samples, i.e., about
1 s of audio for fs = 16 kHz. We thus expect the system to
capture context on the time scales of spoken words. A similar
network architecture was shown to be advantageous in terms
of compactness and runtime for image processing [29].

b) Adaptive normalization: The adaptive normalization
operator used in our network matches the one proposed in [29]
and improves performance and training speed. It adaptively
combines batch normalization and identity mapping of the in-
put x as the weighted sum αkx+βkBN(x) (where αk, βk ∈ R
are scalar weights for the k-th layer and BN is the batch
normalization operator [30]). The weights α, β are learned by
backpropagation as network parameters.

B. Feature loss
In our experiments, simple training losses (e.g., L1) led

to noticeably degraded output quality at lower signal-to-noise
ratios (SNRs). The network seemed to improperly process low-
energy speech information of perceptual importance. Instead,
we train the denoising network using a deep feature loss that
penalizes differences in the internal activations of a pretrained
deep network that is applied to the signals being compared. By
the nature of layered networks, feature activations at different
depths in the loss network correspond to different time scales
in the signal. Penalizing differences in these activations thus
compares many features at different audio scales.

In computer vision, there are standard classification net-
works such as VGG-19 [31], pretrained on standard clas-

sification datasets such as ImageNet [32]. Such standard
classification networks do not exist in the audio processing
field yet, so we design and train our own feature loss network.

a) Feature loss network: We design a simple audio
classification network inspired by the VGG architecture in
computer vision [31], since it is known as a particularly
effective feature loss architecture [25]. The network consists of
15 convolutional layers with 3×1 kernels, batch normalization,
LReLU units, and zero padding. Each layer is decimated by
2, halving the length of the subsequent layer compared to the
preceding one. The number of channels is doubled every 5
layers, with 32 channels in the first intermediate layer. Each
channel in the last feature layer is average-pooled to yield the
output feature vector. The receptive field is 215 − 1 samples.
We train the network using backpropagation by feeding its
output vector as features to one or more logistic classifiers
with a cross-entropy loss for one or more classification tasks.

b) Denoising loss function: Let Φm be the m-th feature
layer of the feature loss network, with layers at different depths
corresponding to features with various time resolutions. The
feature loss function is defined as a weighted L1 loss on the
difference between the feature activations induced in different
layers of the network by the clean reference signal ß and the
output g(x) of the denoising network being trained:

Lß,x(θ) =

M∑
m=1

λm ‖Φm(ß)− Φm(g(x; θ))‖1 , (1)

where θ are the parameters of the denoising network. The
weights λm are set to balance the contribution of each layer
to the loss. They are set to the inverse of the relative values of
‖Φm(ß)− Φm(g(x; θ))‖1 after 10 training epochs. (For these
first 10 epochs, the weights are set to 1.)

III. TRAINING

A. Feature Loss

a) Tasks: To generate a general-purpose feature loss
network, we train it jointly on multiple audio classification
tasks (only the logistic classifier parameters are trained as
task-dependent). We use two tasks from the DCASE 2016
challenge [33]: the acoustic scene classification task and the
domestic audio tagging task. In the first task, we are provided
with audio files featuring various scenes (e.g., beach); the goal
is to determine the scene type for each file. In the second task,
we are given audio files featuring events of interest (e.g., child
speaking); the goal is to determine which events took place in
each file (with possibly multiple events in one file).

b) Data: For the scene classification task, the training
set [34] consists of 30-second-long audio files sampled at
44.1kHz, split among 15 different scenes (i.e., classes). As
we need to develop a feature loss for the reduced sampling
frequency of 16kHz, we resample the data. The audio files
are stereo, so we split them into two mono files. The training
set contains 2,340 files. For the tagging task, the training
set CHiME-Home-refine [35] consists of 4-second-long mono
audio files sampled at 16kHz, with 7 different tags (i.e., labels).
The training set contains 1,946 files.
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c) Training: Network weights are initialized with Xavier
initialization [36]. We use the Adam optimizer [37] with a
learning rate of 10−4. The model is trained for 2,500 epochs.
In each epoch, we iterate over the training data for each task,
alternating between files from each task. The order of the files
is randomized independently for each epoch. The dataset for
the first task is larger than the one for the second task, so
we present some of the files in the second dataset (chosen at
random) a second time to preserve strict alternation between
tasks. 1 epoch consists of 4,680 iterations (1 file per iteration).
As a data augmentation procedure, we do not present entire
clips, but present a continuous section of minimal duration 215

samples that is culled at random for each iteration.

B. Speech Denoising
a) Data: We use the noisy dataset made available in [38].

To our knowledge, this is the largest available dataset for
denoising that provides pre-mixed data with a clearly doc-
umented mixing procedure. It also has the benefit of being the
dataset used in two recent works that we use as baselines.
All details concerning the data can be found in [38]. The
training set is generated from the speech data of 28 speakers
(14 male/14 female) and the background data of 10 unique
background types. Each noise segment is used to generate
four files with 0, 5, 10, and 15dB SNR. The published files
are sampled at 48kHz and normalized so that the clean speech
files have a maximum absolute amplitude of 0.5. We resample
them to 16kHz. The complete dataset comprises 11,572 files.

b) Training: Network weights and biases are initialized
using the Xavier initialization and to zero, respectively. The
adaptive normalization parameters are initialized at α = 1 and
β = 0. The feature loss is computed using the first M = 6
layers. We use the Adam optimizer with a learning rate of
10−4. We train for 320 epochs (80 h) on a Titan X GPU. In
each epoch, we present the entire dataset in randomized order
(1 file per iteration) and files are presented in their entirety.

IV. EXPERIMENTAL SETUP

A. Baselines
As baselines, we use a Wiener filtering pipeline with a

priori noise SNR estimation (as implemented in [39]), and
two recent state-of-the-art methods that use deep networks to
perform end-to-end denoising directly on the raw waveform:
the Speech Enhancement Generative Adversarial Network
(SEGAN) [21] and a WaveNet-based network [20]. This last
one is designed around minor modifications to the architecture
in [27]. It uses stacked context aggregation modules with gated
activation units, skip connections, and a conditioning mech-
anism. The modifications include training with a regression
loss (L1 on the raw waveform) rather than a classification
loss. The number of layers is larger than in our network
(30), while the receptive field is smaller (3 · 211 samples),
capturing contextual information on more limited time scales.
The network architecture is also distinctly more complex than
ours. For both deep learning baselines, we use the code and
models published by their respective authors. These models are
optimized by their authors on the exact same training dataset,
allowing fair comparison.
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Fig. 1. Distribution of the test set in terms of composite background score.
The test set was partitioned into 8 tranches, demarcated by red dashed lines.

B. Data

All our testing is done in mismatched conditions. The data
source is the same as in Section III-B. The speech is obtained
from 2 speakers (1 male/1 female). The background data is
obtained from 5 distinct background types. Neither the speak-
ers nor the backgrounds used at test time were seen during
training. Each background segment is used to generate four
files with 2.5, 7.5, 12.5, and 17.5 dB SNR. The complete test
set comprises 824 files. Our denoising pipeline needs about
12 ms to process every 1 s of audio in our configuration. The
denoised files for our pipeline and the baselines are available
as supplementary material at http://ieeexplore.ieee.org.

C. Quantitative measures

a) Objective quality metrics: To evaluate each system,
we compare its output to the ground-truth speech signal (i.e.,
the clean speech alone). The common metrics to measure
speech quality given ground-truth are compared in [1]. We use
here the composite scores from [39] that were found to be best
correlated with human listener ratings. These consist of the
overall (OVL), the signal (SIG), and the background (BAK)
scores, each on a scale from 1.0 to 5.0, and corresponding re-
spectively to the measure of overall signal quality, the measure
of quality when considering speech signal degradation alone,
and the measure of quality when considering background
signal intrusiveness alone [40]. We also report the SNR [41],
as a raw measure of the relative energies of the residual
background and the speech in a given signal, quantified in
decibel (dB). We use the implementations in [1]. For all
metrics, higher scores denote better performance.

The test dataset is divided into 4 mixing SNR subgroups
(see Section IV-B). We argue that the dataset should be rather
considered as a continuous distribution of degradation, since
SNR correlates poorly with human perception of the degrada-
tion level [1]. The continuum of degradation levels is better
represented in the distribution of the background intrusiveness
BAK score. (The SIG score is less informative since the
undistorted speech signal is added.) To evaluate performance
as a function of input degradation magnitude, we partition the
test set into 8 tranches of equal size, corresponding to the 8
octiles of the BAK score distribution as shown in Figure 1,
with tranches representing a different denoising difficulty.

TABLE I
PERFORMANCE FOR DIFFERENT APPROACHES ACCORDING TO OBJECTIVE

QUALITY MEASURES. (HIGHER IS BETTER.)

SNR SIG BAK OVL

Noisy 8.45 3.34 2.44 2.63
Wiener 12.28 3.23 2.68 2.67
SEGAN 14.82 3.21 2.76 2.56
WaveNet 18.18 2.87 3.08 2.43
Ours 19.00 3.86 3.33 3.22

http://ieeexplore.ieee.org


4 PREPRINT

1 2 3 4 5 6 7 8
Tranche

10

20

SN
R

1 2 3 4 5 6 7 8
Tranche

2

3

4

SI
G

1 2 3 4 5 6 7 8
Tranche

2

3

4

B
AK

Ours
Wavenet

1 2 3 4 5 6 7 8
Tranche

2

3

4

O
VL

SEGAN
Wiener

Fig. 2. Performance of different denoising approaches according to 4 objective
quality measures (SNR, SIG, BAK, and OVL), plotted for each tranche in the
test set. For all measures, higher is better.

b) Results: Table I reports these metrics for our approach
and the baselines, evaluated over the test set. Our method
outperforms all the baselines according to all measures by a
comfortable margin. The plots in Figure 2 further show that
our network yields the best quality for all levels of background
intrusiveness separated in tranches, with a particularly signif-
icant margin according to perceptually-motivated composite
measures. Table II shows the benefit of using a feature loss
compared to training the same denoising network, by the same
procedure on the same data, using an L1 or an L2 loss.
Training with a feature loss outperforms networks trained with
other losses. In particular, while an L1 loss achieves a similar
SNR score as our feature loss, the feature loss shows definite
improvement for the BAK and OVL metrics. It also scores
well for the SIG metric, especially in the noisier tranches,
demonstrating the ability to capture meaningful features when
important cues are hidden in the noise.

D. Perceptual Experiments

a) Experimental design: Objective metrics are known to
only partially correlate with human audio quality ratings [1].
Hence, we also conduct carefully designed perceptual ex-
periments with human listeners. The procedure is based on
A/B tests deployed at scale on the Amazon Mechanical Turk
platform. The A/B tests are grouped into Human Intelligence
Tasks (HITs). Each HIT consists of 100 “ours vs baseline”
pairwise comparisons. Each comparison presents two audio
clips that can be played in any order by the worker, any number
of times. One of the clips is the output of our approach and
one is the output of one of the baselines, for the same input
from the test set. The files are presented in random order (both
within each pair and among pairs), so the worker is given no
information as to the provenance of the clips. The worker is
asked to select, within each pair, the clip with the cleaner
speech. Each HIT includes 10 additional ‘sentry’ comparisons
in which the right answer is obvious to guard against negligent
or inattentive workers. These sentry pairs are mixed into the
HIT in random order. If a worker gives an incorrect answer to
two or more sentry pairs, the entire HIT is discarded. Each HIT
then contains a total of 110 pairwise comparisons. A worker

TABLE II
TRAINING THE SAME NETWORK WITH DIFFERENT LOSS FUNCTIONS. FOR

ALL METRICS, HIGHER IS BETTER.

SNR SIG BAK OVL

Noisy 8.45 3.34 2.44 2.63
L2 18.46 3.70 3.21 3.07
L1 18.98 3.75 3.27 3.11

Feature loss 19.00 3.86 3.33 3.22

is given 1 hour to complete a HIT. Each HIT is completed by
10 distinct workers.

b) Results: The results are summarized in Table III. This
table presents the fraction of blind pairwise A/B comparisons
in which the listener rated a clip denoised by our network as
cleaner than the clip denoised by a baseline. The preference
rates are presented versus each baseline across 4 tranches.
The most notable results are for the hardest tranche, where
the output of our approach was rated cleaner than the output
of recent state-of-the-art deep networks in more than 83% of
the comparisons. All results are statistically significant with
p < 10−3. This demonstrates that our algorithm is more robust
in this regime, in which degradation from the background
signal is much more noticeable, and for which denoising is
particularly useful. For easier tranches, with lower levels of
degradation in the input, both our method and the baselines
generally perform satisfactorily and listeners can experience
more difficulty distinguishing between the different processed
files, but the preference rate for our approach remains well
above chance (50%), at statistically significant levels, for all
baselines across all tranches.

V. CONCLUSION

We presented an end-to-end speech denoising pipeline that
uses a fully-convolutional network, using a deep feature loss
network pretrained on several relevant audio classification
tasks for training. This approach allows the denoising system
to capture speech structure at various scales and achieve
better denoising performance without added complexity in the
system itself or expert knowledge in the loss design. Experi-
ments demonstrate that our approach significantly outperforms
recent state-of-the-art baselines according to objective speech
quality measures as well as large-scale perceptual experiments
with human listeners. In particular, the presented approach is
shown to perform much better in the noisiest conditions where
speech denoising is most challenging. Our paper validates the
combined use of convolutional context aggregation networks
and feature losses to achieve state-of-the-art performance.

TABLE III
RESULTS OF PERCEPTUAL EXPERIMENTS. EACH CELL LISTS THE

FRACTION OF BLIND RANDOMIZED PAIRWISE COMPARISONS IN WHICH
THE LISTENER RATED THE OUTPUT OF OUR APPROACH AS CLEANER THAN
THE OUTPUT OF A BASELINE. EACH ROW LISTS RESULTS FOR A SPECIFIC

BASELINE. EACH COLUMN LIST RESULTS FOR A TRANCHE OF THE
TESTING SET. (CHANCE IS AT 50%, HIGHER IS BETTER.)

Tranche: 1 (Hard) 3 (Medium) 5 (Easy) 7 (Very easy)

Ours > Wiener 96.1% 89.4% 81.7% 90.2%
Ours > SEGAN 83.5% 70.5% 64.1% 61.4%
Ours > WaveNet 83.9% 67.0% 61.4% 55.8%
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APPENDIX

This appendix provides additional details on the denoising
and feature loss network architectures presented in Section II.

A. Denoising Network

a) Layer structure: We denote the 16 (consecutive) net-
work layers by Λ0, . . . ,Λ15. Λ0 and Λ15 are 1-dimensional
tensors of dimensionality N×1 and correspond to the degraded
input signal and the enhanced output signal, respectively.
The number of samples N is not given in advance. Each
intermediate layer Λk ∈ {Λ1, . . . ,Λ15} is a 2-dimensional
tensor of dimensionality N×W , where W is the width of (i.e.,
the number of feature maps in) each layer. For k = 1, . . . , 14,
the content of each intermediate layer Λk is computed from
the previous layer Λk−1 via the operation

Λk
i = Ψ

Γk

∑
j

Λk−1
j ∗rk Kk

i,j

 , (2)

where Λk
i is the i-th feature map of layer Λk, Λk−1

j is the j-th
feature map of layer Λk−1, Kk

i,j is a learned 3×1 convolutional
kernel, Γk is the adaptive normalization operator and Ψ is a
pointwise nonlinearity. Because of the presence of adaptive
normalization, no bias term is used for these layers. The
operator ∗r is a dilated convolution [26], i.e.,

(Λj ∗r Ki,j) [n] =

+1∑
m=−1

Ki,j [m]Λj [n− rm]. (3)

The dilation factor for the k-th layer is set at rk = 2k−1

for k ∈ {1, . . . 13}. Between layer Λ13 and Λ14, we do not
use dilation (i.e., r14 = 1). For the output layer Λ15, we use a
linear transformation (1×1 convolution with no nonlinearity)
in order to synthesize the sample of the output signal so that

Λ15 =
∑
j

Λ14
j ×K14

j + b, (4)

where b is a learned bias term. The receptive field of the
network is 214 + 1 = 16385 samples.

b) Nonlinear units: For the pointwise nonlinearity Ψ, we
use the leaky rectified linear unit (LReLU) [28]:

Ψ(x) = max(δx, x) with δ = 0.2. (5)

c) Adaptive normalization: Γk corresponds to the adap-
tive normalization operation described in Section II-A. For
k ∈ {1, . . . 13}, the operator adaptively combines batch
normalization and identity mapping as

Γk(x) = αkx+ βkBN(x), (6)

where αk, βk ∈ R are learned scalar weights and BN is the
batch normalization operator [30].

d) Zero padding: Our algorithm uses zero-padding at
each layer so that the “effective” length of each layer tensor
is constant and identical to N .

e) Training loss: The network is trained through back-
propagation using our deep feature loss as described in Sec-
tion II-B (see in particular Equation 1). The feature loss
classification network is further detailed in the next section.

B. Feature Loss Network

a) Feature layer structure: As mentioned in Section II-B,
the network is inspired by the VGG architecture from
computer vision. We denote its 15 (consecutive) layers by
Φ0, . . . ,Φ14. The first layer Φ0 is a 1-dimensional tensor of
dimensionality N × 1 and corresponds to the input signal.
The number of samples N is not given in advance. Each
intermediate layer Φm ∈ {Φ1, . . . ,Φ14} is a 2-dimensional
tensor of dimensionality N

2m ×Wm, where Wm is the width
of each layer, set to Wm = 32×2b

m−1
5 c (i.e., the number

of features is doubled every 5 layers). The content of each
intermediate layer Φm is computed from the previous layer
Φm−1 through the following operation:

Φ̃m
i = Ψ

BN
∑

j

Φm−1
j ∗ Lm

i,j

 , (7)

where Φ̃m
i is the i-th feature map of layer Φm prior to the

decimation operation, Φm−1
j is the j-th feature map of layer

Φm−1, Lm
i,j is a learned 3×1 convolutional kernel, BN is

the batch normalization operator, and Ψ is the same pointwise
linearity as in Equation 5. Because of the presence of batch
normalization, no bias term is used for these layers. This is
followed by the decimation operation

Φm
i [n] = Φ̃m

i [2n], (8)

following which the length of the subsequent layer is half the
length of the preceding one. The receptive field of the network
is 215 − 1 = 32767 samples. The network is zero-padded as
necessary for each layer so that Φ̃m and Φm−1 have the same
“effective” length.

b) Classification layer: To perform the p-th classification
task of interest, we first average-pool each channel in the last
feature layer Φ̃14 to yield an output feature vector Φ15,p of
dimensionality 1×W14. This vector is fed to a linear layer to
form a logit vector Φ15,p of dimensionality 1×Cp (with Cp

the number of classes associated with the p-th task) such that

Φ16,p
i =

∑
j

Φ15,p
j ×L16,p

i,j + b̃pi , (9)

where L̃16,p
i,j is a learned scalar weight and b̃pi is a learned bias

term. We finally get the output classification vector Φ17,p of
the network through the operation

Φ17,p = ∆(Φ16,p), (10)

where ∆ is the logistic nonlinearity associated with the type of
multi-label classification for the p-th task (i.e., vector softmax
nonlinearity if the task asks for a unique label for each audio
file, pointwise sigmoid if the task allows for any number of
labels for each audio file). Φ17,p is of dimension 1×Cp and
its elements are in the range [0, 1].

c) Training loss: Training is done through backpropaga-
tion using a cross-entropy loss between the vector Φ17,p asso-
ciated with the current file (for task p) and its corresponding
ground truth classification vector (i.e., the vector of dimension
1×Cp in which the c-th element is 1 if the c-th classification
label is associated with the file, 0 otherwise).
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