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Abstract— This study proposes a fully convolutional network 

(FCN) model for raw waveform-based speech enhancement. The 

proposed system performs speech enhancement in an end-to-end 

(i.e., waveform-in and waveform-out) manner, which differs 

from most existing denoising methods that process the 

magnitude spectrum (e.g., log power spectrum (LPS)) only. 

Because the fully connected layers, which are involved in deep 

neural networks (DNN) and convolutional neural net-works 

(CNN), may not accurately characterize the local in-formation of 

speech signals, particularly with high frequency components, we 

employed fully convolutional layers to model the waveform. 

More specifically, FCN consists of only convolutional layers and 

thus the local temporal structures of speech signals can be 

efficiently and effectively preserved with relatively few weights. 

Experimental results show that DNN- and CNN-based models 

have limited capability to restore high frequency components of 

waveforms, thus leading to decreased intelligibility of enhanced 

speech. By contrast, the proposed FCN model can not only 

effectively recover the waveforms but also outperform the LPS-

based DNN baseline in terms of short-time objective 

intelligibility (STOI) and perceptual evaluation of speech quality 

(PESQ). In addition, the number of model parameters in FCN is 

approximately only 0.2% com-pared with that in both DNN and 

CNN. 

I. INTRODUCTION 

Speech enhancement (SE) has been widely used as a 

preprocessor in speech-related applications such as speech 

coding [1], hearing aids [2, 3], automatic speech recognition 

(ASR) [4], and cochlea implants [5, 6]. In the past, various SE 

approaches have been developed. Notable examples include 

spectral subtraction [7], minimum-mean-square-error 

(MMSE) -based spectral amplitude estimator [8], Wiener 

filtering [9], and non-negative matrix factorization (NMF) 

[10]. Recently, deep denoising autoencoder (DDAE) and deep 

neural network (DNN)-based SE models have also been 

proposed and extensively investigated [11-13]. In addition, to 

model the local temporal-spectral structures of a spectrogram 

efficiently, convolutional neural networks (CNN) have also 

been employed to further improve the SE performance [14, 

15]. Most of these denoising models focus only on processing 

the magnitude spectrogram (e.g., log-power spectra (LPS)) 

and leave the phase in its original noisy form. This may be 

because no clear structure exists in a phase spectrogram, 

precisely estimating clean phases from noisy counterparts 

[16] is difficult.  

Several recent studies have revealed the importance of 

phase when spectrograms are resynthesized back into time-

domain waveforms [17, 18]. For example, Paliwal et al. 

confirmed the importance of phase for perceptual quality in 

speech enhancement, especially when window overlap and 

length of the Fourier transform increase [17]. To further 

improve the performance of speech enhancement, phase 

information is considered in some up-to-date studies [16, 19, 

20]. Williamson et al. [16, 19] employed a DNN to estimate 

the complex ratio mask (cRM) from a set of complementary 

features, and then the magnitude and phase can be jointly 

enhanced through cRM. Although having been confirmed to 

provide satisfactory denoising performance, these methods 

still need to map features between time and frequency 

domains for analysis and resynthesizing through the (inverse) 

Fourier transform.  

In the field of ASR, several studies have shown that deep-

learning-based models with raw waveform inputs can achieve 

higher accuracy than those with hand-crafted features (e.g., 

MFCC) [21-26]. Because the acoustic patterns in time domain 

can appear in any positions, most of these methods employ 

CNN to detect useful information efficiently. However, in the 

field of speech enhancement, directly using the raw 

waveforms as system inputs has not been well studied. When 

compared to ASR, in addition to distinguishing speech 

patterns from noise, SE must further generate the enhanced 

speech outputs. In the time domain, each estimated sample 

point has to cooperate with its neighbors to represent 

frequency components. This interdependency may produce a 

laborious model in generating high and low frequency 

components simultaneously. Until recently, wavenet [27] was 

proposed and successful models raw audio waveforms 

through sample wise prediction and dilated convolution. 

In this study, we investigate the capability of different 

deep-learning-based SE methods with raw waveform features. 

We first note that the fully connected layers may not well 

preserve local information to generate high frequency 

components. Therefore, we employ a fully convolutional 
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network (FCN) model to enable each output sample to depend 

locally on the neighboring input regions. FCN is very similar 

to a conventional CNN except that the top fully connected 

layers are removed [28]. Recently, FCN has been proposed 

for SE [29] to process the magnitude spectrum. In addition, 

since the effect of convolving a time domain signal x(t) with a 

filter h(t) equals to multiplying its frequency representation 

X(f) with the frequency response of the filter H(f) [30]. Hence, 

it may be unnecessary to explicitly mapping waveform to 

spectrogram for speech enhancement. Based on the unique 

properties of FCN and the successful results in [29], we 

adopted FCN to construct our waveform-in and waveform-out 

system. Experimental results show that compared to DNN and 

CNN, the proposed FCN model can not only effectively 

recover the waveform but also dramatically reduce the 

number of parameters. 

II. RAW WAVEFORM SPEECH ENHANCEMENT 

The goal of SE is to improve the intelligibility and quality 

of a noisy speech signal [31]. Because the properties in the 

log domain are more consistent with the human auditory 

system, conventionally, the log power spectrum is extracted 

from a raw speech signal for deep-learning-based denoising 

models [12, 13, 32-34]. However, employing LPS as features 

produces two drawbacks. First, phase components have not 

been well considered in LPS. In other words, when the 

enhanced speech signal is synthesized back to the time 

domain, the phase components are simply borrowed from the 

original noisy speech, which may degrade the perceptual 

quality of enhanced speech [17, 18]. Second, the (inverse) 

Fourier transform must be applied for mapping between time 

and frequency domains, thus increasing the computation load. 

In this study, we propose raw waveform-based SE system as 

illustrated in Fig.1 and explore solutions to address these 

issues. 

A. Characteristics of Raw Waveform 

The characteristics of a signal represented in the time 

domain are very different from those in the frequency domain. 

In the frequency domain, the value of a feature (frequency 

bin) represents the energy of the corresponding frequency 

component. However, in the time domain, a feature (sample 

point) alone does not carry much information; it must 

combine information from its neighbors in order to represent 

a certain frequency component. For example, a sample point 

must be very different or very similar to its neighbors to 

represent high or low frequency components, respectively. 

This interdependency may produce a laborious model for 

representing high and low frequency components 

simultaneously. It may also cause many denoising models to 

choose to work in the frequency domain rather than in the 

time domain [7-10, 12]. In addition, unlike the spectrogram of 

speech signal (e.g., the consonants usually occupy only high 

frequency bins, whereas the repeated patterns of formants 

usually concentrate on low-to-middle frequency bins), the  

Denoising 
Model

0 100 200 300 400 500 600
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Noisy 
Waveform

Clean 
Waveform

 
Fig. 1. Speech enhancement using raw waveform. 
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Fig. 2. Relation between output layer and last hidden layer in a fully 

connected layer. 

 

patterns in the time domain can appear in any position. This 

suggests that the convolution operation can efficiently find 

useful locally acoustic information. Therefore, most studies 

have employed the CNN model for analyzing raw waveforms 

[21-25, 27].  

B. Problems in Fully Connected Layers for Modeling Raw 

Waveform 

Using artificial neural networks (ANNs) for waveform-

based speech enhancement can date back as early as to 1980’s. 

In [35, 36], Tamura and Waibel used an ANN to predict short 

window of clean speech waveforms from noisy ones. They 

found that the ANN-enhanced waveform has no higher 

formant structures and gave some explanations by analyzing 

the weight matrix between last hidden layer and output layer. 

This phenomenon is also observed in our DNN and CNN-

enhanced waveform. 

The output layer and last hidden layer in DNN and CNN 

are linked in a fully connected manner, as shown in Fig. 2. 

We argue that this kind of connection produces difficulties in 

modeling high and low frequency components of waveform 

simultaneously. The relation between the output and last 

hidden layers can be represented by the following equation 

(bias is neglected here for simplicity). 

𝐲 = 𝐖𝐡                                   (1) 

where 𝐲 = [𝑦1 … 𝑦𝑡 … 𝑦𝑁]𝑇 ∈ 𝑅𝑁×1 denotes the output sample 

points of the estimated waveform, and N is the number of 

points in a frame.  𝐖 = [𝐰1 … 𝐰𝑡 … 𝐰𝑁]𝑇 ∈ 𝑅𝑁×ℎ  is the 

weight matrix, h is the number of nodes in the last hidden 

layer, and 𝐰n ∈ 𝑅ℎ×1 is the weight vector that connects the  
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Fig. 3. Local connection in fully convolutional networks. 

 

hidden layer 𝐡 ∈ 𝑅ℎ×1  and the output sample 𝑦𝑛 . In other 

words, each sample point can be represented as: 

𝑦𝑡 = 𝐰𝑡
𝑇𝐡                                (2)  

With fixed h, we consider two situations: 1) when 𝑦𝑡  is in 

the high frequency region, its value should be very different 

from its neighbors (e.g., 𝑦𝑡−1 , 𝑦𝑡+1), which implies that 𝐰𝑡 

and (𝐰𝑡−1, 𝐰𝑡+1) cannot be highly correlated; 2) when 𝑦𝑡  is 

in the low frequency region, we can deduce that 𝐰𝑡  and 

(𝐰𝑡−1, 𝐰𝑡+1) should correlate. However, because W is fixed 

after training, situations 1) and 2) cannot be satisfied 

simultaneously. Therefore, it is difficult to “learn” the weights 

in fully connected layers to generate high and low frequency 

parts of a waveform simultaneously. Please note that here we 

double quotes the term to emphasize that this structure only 

makes learning more difficult, not implying DNN cannot 

represent this mapping function. In fact, from universal 

approximation theorem [37],   a DNN can approximate any 

memory-less function when given appropriate parameters; 

however, it does not guarantee those parameters can be 

learned. 

In fact, the hidden fully connected layers also encounter 

difficulties modeling raw waveforms. We discuss this 

problem in greater detail in Section V. 

III. FCN 

In the previous section, we showed that fully connected 

layers may not model raw waveforms precisely. Therefore, in 

this study, we try to apply FCNs, which do not contain any 

fully connected layers, to perform SE in the waveform 

domain. FCN is very similar to the conventional CNN, except 

that all the fully connected layers are removed. This can 

produce several benefits and has achieved great success in the 

field of computer vision for modeling raw pixel outputs [28]. 

The advantage of discarding fully connected layers is that the 

number of parameters in the network can be dramatically 

reduced, thus making FCNs particularly suitable for 

implementations in mobile devices with limited storage 

capacity. In addition, each output sample in FCN depends 

only locally on the neighboring input regions as shown in Fig. 

3. This is different from fully connected layers in which the 

local information and the spatial arrangement of the previous 

features cannot be well preserved. 

 

 
Fig. 4. Example of generating a high frequency signal by DNN and FCN. 

 

 

Fig. 5. Correlation matrix of the last weight matrix W in DNN. 

 

More specifically, to explain why FCN can model high and 

low frequency components of raw waveforms simultaneously, 

we start with the connections between the output and last 

hidden layers. The relation between output sample 𝑦𝑡  and the 

connected hidden nodes 𝐑𝑡 (also called receptive field) can be 

simply represented by the following equation (bias is 

neglected for simplicity). 

𝑦𝑡 = 𝐅T𝐑𝑡                                     (3) 

where 𝐅 ∈ 𝑅𝑓×1 denotes one of the learned filters, and f is the 

size of the filter. Please note that F is shared in the 

convolution operation and is fixed for every output sample. 

Therefore, if 𝑦𝑡  is in the high frequency region, 𝐑𝑡  and 

(𝐑𝑡−1 ,  𝐑𝑡+1)  should not be very similar. Whether 𝐑𝑡  is 

different from its neighbors depends on the filtered outputs of 

previous locally connected nodes (input) 𝐈𝑡 . For example, 

when the input 𝐈𝑡  is in the high frequency region, and the 

filter G is a high-pass filter, then 𝐑𝑡  (and hence 𝑦𝑡) may also 

be extremely different from its neighbors. This argument can 

also hold for the low frequency case. Therefore, FCN can well 

preserve the local input information and handle the difficulty 

of using fully connected layers to model high and low 

frequency components simultaneously. When comparing the 

locations of subscript t from (2) to (3), it can be observed that 

t changes from the model (𝐰𝑡) to connected nodes (𝐑𝑡). This 

implies that in the fully connected case, the model has to deal 

with the interdependency between output samples, whereas in 

FCN, the connected nodes handle the interdependency. 
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TABLE I 

PERFORMANCE COMPARISON OF DIFFERENT MODELS WITH RESPECT TO STOI AND PESQ. 

 
DNN-baseline 

(LPS) 

DNN 

(waveform) 

CNN 

(waveform) 

FCN 

(waveform) 

SNR (dB) STOI PESQ STOI PESQ STOI PESQ STOI PESQ 

12 0.814 2.334 0.737 2.548  0.788  2.470 0.874 2.718 

6 0.778 2.140 0.715 2.396  0.753  2.302 0.833 2.346 

0 0.717 1.866 0.655 2.118  0.673  2.011 0.758 1.995 

-6 0.626 1.609 0.549 1.816  0.561  1.707 0.639 1.719 

-12 0.521 1.447 0.429 1.573  0.441  1.453 0.506 1.535 

Avg. 0.691 1.879 0.617 2.090  0.643  1.989 0.722 2.063 

 

 

(a) Clean 

 

(b) Noisy 

 

(c) DNN (waveform) 

 

(d) FCN (waveform) 

Fig. 6. Spectrograms of a TIMIT utterance: (a) clean speech, (b) noisy speech 
(engine noise), (c) enhanced waveform by DNN, and (d) enhanced waveform 

by FCN. 

IV. EXPERIMENTS 

A. Experimental Setup 

In our experiments, the TIMIT corpus [38] was used to 

prepare the training and test sets. For the training set, 600 

utterances were randomly selected and corrupted with five 

noise types (Babble, Car, Jackhammer, Pink, and Street) at 

five SNR levels (-10 dB, -5 dB, 0 dB, 5 dB, and 10 dB). For 

the test set, we randomly selected another 100 utterances 

(different from those used in the training set). To make 

experimental conditions more realistic, both noise types and 

SNR levels of the training and test sets were mismatched. 

Thus, we adopted three other noise signals: white Gaussian 

noise (WGN), which is a stationary noise; and an engine noise 

and a baby cry, which are two non-stationary noises, using 

another five SNR levels (-12 dB, -6 dB, 0 dB, 6 dB, and 12 

dB) to form the test set. All the results reported in Section IV-

B were averaged across the three noise types. 

In this study, 512 sample points were extracted from the 

waveforms to form a frame for the proposed SE model. In 

addition, the 257 dimensional LPS vectors were also obtained 

from the frames for the baseline system. The CNN in this 

experiment had four convolutional layers with padding (each 

layer consisted of 15 filters each with a filter size of 11) and 

two fully connected layers (each with 1024 nodes). FCN had 

the same structure as that of CNN, except the fully connected 

layers were each replaced with another convolutional layer. 

DNN had only four hidden layers (each layer consisting of 

1024 nodes), because when it grows deeper, the performance 

starts to saturate as a result of the optimization issue [39]. All 

the models employ parametric rectified linear units (PReLUs) 

[40] as activation functions and are trained using Adam [41] 

with batch normalization [42] to minimize the mean square 

error between clean and enhanced waveform. 

To evaluate the performance of the proposed models, the 

perceptual evaluation of speech quality (PESQ) [43] and the 

short-time objective intelligibility (STOI) scores [44] were 

used to evaluate the speech quality and intelligibility, 

respectively. 

 

B. Experimental Results 

1) Qualitative Comparison: In this section, we investigate 

different deep learning models for SE with raw waveform. Fig. 

4 shows an example of modeling a high frequency signal by 

DNN and FCN. In this figure, we can observe that for DNN to 

produce the corresponding high frequency signal as FCN is 

difficult. The same phenomenon can also be observed in CNN 

(not shown because of space restrictions). As mentioned in 

Section II-B, the failing of modeling high-frequency 

components is due to the natural limitation of fully connected 

layers. More specifically, since the high frequency 

components in speech are rare, this generally causes DNN and 

CNN to sacrifice the high frequency components in the 

optimization process. To further verify this claim, the 

correlation matrix C of the last weight matrix W in DNN is 

presented in Fig. 5. The element of C is defined as follows: 

𝐶𝑖𝑗 =
(𝐰𝑖 − 𝐰𝑖)

𝑇(𝐰𝑗 − 𝐰𝑗) 

 ‖𝐰𝑖 − 𝐰𝑖  ‖2‖𝐰𝑗 − 𝐰𝑗‖
2

   ∀ 1 ≤ 𝑖, 𝑗 ≤ 512   (4) 

here, 𝐰𝑖 ∈ 𝑅1024×1 is the weight vector, and 𝐰𝑖 is the mean of 

𝐰𝑖. The diagonal regions of C show that each weight vector is 

related only to its neighboring vectors and that the correlation 

drops to zero when the two vectors are a considerable distance 

from each other. In addition, the correlation coefficient of two 

neighboring vectors approximately reaches 0.9, implying that 

the generated samples strongly correlate. This explains why  



 

for DNN (and CNN) to generate high frequency waveform is 

arduous. 

We next present the following: the spectrograms of a clean 

speech utterance, the same utterance corrupted by the engine 

noise, DNN-enhanced waveform, and FCN-enhanced 

waveform in Fig. 6(a), (b), (c), and (d), respectively. When 

comparing Fig. 6(a) and (c), we can clearly observe that the 

high frequency components of speech are missing in the 

spectrogram of DNN-enhanced waveform. This phenomenon 

can also be observed in CNN (not shown because of space 

restrictions) but is not as serious as in the DNN case. 

However, by comparing Fig. 6(a) and (d), we can note that 

speech components are well preserved and noise is effectively 

removed. 

2) Quantitative Comparison: Finally, Table I presents the 

results of the average STOI and PESQ scores on the test set, 

based on different models and features. From this table, we 

can see that the waveform-based DNN achieved the highest 

PESQ score and the worst STOI score, suggesting that a good 

balance cannot be achieved between the two goals of speech 

enhancement (improving both the intelligibility and quality of 

a noisy speech signal). This may be because the model 

eliminates too many speech components when removing 

noise. By contrast, FCN can achieve the highest STOI score 

and a satisfactory PESQ score. It is worth nothing that 

because the fully connected layers were removed, the number 

of weights involved in FCN was approximately only 0.2% 

when compared to that involved in DNN and CNN. 

V. DISCUSSION 

We also noted that the issue of missing high frequency 

components becomes critical when the number of fully 

connected layers increases. This implies that the hidden fully 

connected layers actually also have difficulties in modeling 

waveform. The reason may be that it is crucial to preserve the 

relations between sample points in time domain to represent a 

certain frequency component. However the mapped features 

by the fully connected layer are abstract and do not retain the 

spatial arrangement of the previous features. In other words, 

fully connected layers destroy the correlation between 

features, making it difficult to generate waveforms. This 

effectively explains why CNN has relatively minor problems 

regarding missing high frequency components when 

compared to DNN, because CNN contains fewer fully 

connected layers. 

The generation of high frequency components by DNN is 

also influenced by how the data is fed in. In general, 

waveform is presented to DNN by sliding the input window 

across the noisy speech. At each step, the window is shifted 

by an increment, L, between 1 and the window length M (512 

in our experiment). When L = M, the estimation window 

moves along without overlap and this setting was adopted in 

previous section. We found that in the case of a single time 

step increment, L = 1, which most closely corresponds to 

filter implementations [45], the high frequency components 

can be successfully generated as FCN. Fig. 7 illustrates the  
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output frames with window shift increment 1 and 512 and the 

enhanced waveform when the clean speech is in low and high 

frequency cases, respectively. It can be observed that when 

the shift increment is 1, DNN can successfully generated high 

frequency components. Note that the DNN used in these two 

settings is the same; the only difference is how the data is 

given to the model.  In fact, when L = 1, we can treat the 

whole DNN as a filter in the convolution, and the relation 

between output and last hidden layer is similar to FCN. 

Specifically, if we take the first node of output layer in DNN 

as estimated output (as in Fig. 7), then every output sample is 

generated through fixed weights 𝐰1, which are similar to the 

role of learned filters F in (3).  

From this discussion, we can conclude that since the weight 

vectors in last fully connected layer are highly correlated to 

each other, it is difficult for them to produce high frequency 

waveform (as in the lower part of Fig. 7). However, if we 

only use one node, then the problem can be solved (as in the 

upper part of Fig. 7). Because in this case, each estimated 

sample point is decided by fixed weights and different inputs 

rather than fixed input and different weights as in the L = 512 

case. Although applying DNN in a filter way (L = 1) can 

solve the missing high frequency problem, it is very 

inefficient compared to FCN.  

VI. CONCLUSIONS 

The contribution of our study is two-fold. First, we 

investigated the capability of different deep-learning-based 

SE methods with raw waveform inputs. The results indicated 

that fully connected layers may not be necessary because: 1) 

they dramatically increase the number of model parameters; 2) 

they have limited capability to preserve the correlation 

between features, which is very important for generating 

waveforms. Second, to overcome this problem, we employed 

FCN in our study and confirmed that it yields better results 

compared to those of DNN with LPS inputs. In the future, to 

enhance (optimize) each utterance as a whole, we will apply 

FCN in an utterance-based manner instead of frame-wise 

processing. 
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