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Abstract
We present a method for audio denoising that combines pro-
cessing done in both the time domain and the time-frequency
domain. Given a noisy audio clip, the method trains a deep
neural network to fit this signal. Since the fitting is only partly
successful and is able to better capture the underlying clean sig-
nal than the noise, the output of the network helps to disen-
tangle the clean audio from the rest of the signal. The method
is completely unsupervised and only trains on the specific au-
dio clip that is being denoised. Our experiments demonstrate
favorable performance in comparison to the literature meth-
ods, and our code and audio samples are available at https:
//github.com/mosheman5/DNP.
Index Terms: Audio denoising; Unsupervised learning

1. Introduction
Many unsupervised signal denosing methods work in a similar
way. First, a spectral mask is estimated, which predicts for ev-
ery frequency, whether it is relevant to the clean signal or mostly
influenced by the noise. Then, one of a few classical methods,
such as the Wiener filter [1] or MMSE-LSA [2] are used to clean
the audio.

The denoising methods differ in the way in which the mask
is first estimated. Each method is based on a different set of un-
derlying assumptions on the properties of the signal, the noise,
or both. For example, some algorithms assume that the change
in the power spectrum of the noise is slower than the change
in that of the clean signal and, therefore, in order to estimate
the noise statistics, averaging of the power signal over multiple
time points is performed.

In this work, we investigate the use of deep network priors
for the task of unsupervised audio denoising. These priors are
based on the assumption that the clean signal, in the time do-
main, is well-captured by a deep convolutional neural network.
The method, therefore, trains a network to fit the input signal,
and observes the part of the signal that has the largest amount of
uncertainty, i.e., which was modeled most poorly. This part is
then masked out and one of the classical speech-enhancement
methods is applied.

Similar priors have been recently used in computer vision,
in order to reconstruct noise free images [3]. However, we note
that the cleaning of audio signals is much more involved. We
observe three major differences between the usage of deep net-
work priors in images vs. its use in audio:

1. In computer vision, the clean image emerges from the
learned network simply as its output. While averaging over
multiple training iterations does improve the accuracy to some
degree, its contribution is minor. In contrast, when a similar
method is applied to audio, the network produces an output that
is unacceptable in quality.

2. In computer vision, if early stopping is not applied, the net-
work fits the noisy input image. In audio, this fitting does not
occur nearly as quickly (if at all) and instead of converging to a
solution with a very small loss, the network displays relatively
large fluctuations.

3. In vision, the networks train much faster on a clean image
than on a mixed signal that contains both image and noise. In
audio, there is a difference in the training progress between a
clean and an extremely noisy signal, but moderate amounts of
noise do not significantly change the convergence speed.

Due to these differences, we cannot assume, as is done
when applying deep image priors in computer vision, that the
output of the network can be used directly. Instead, our method
tracks the sequence of network outputs during training and ob-
serves its behavior. A robust spectral mask is obtained, by con-
sidering the relative stability of every point in the spectrogram
of the signal.

Our method achieves results that surpass all of the unsuper-
vised literature methods and approach those of the supervised
methods. Note that similar to most unsupervised methods in
the literature, the method observes only the input signal and
does not benefit from observing (even in an unsupervised way)
other signals in the dataset.

2. Related work
Unsupervised Noise estimation algorithms Noise spectrum
estimation is a crucial part of speech enhancement systems.
Traditional noise estimation algorithms are based on similar as-
sumptions, namely that the speech signal contains pauses and
low-energy segments where statistics of the noise can be mea-
sured, and that the noise is more stationary than the speech sig-
nal. Noise estimation algorithms can be divided into three main
categories: minimal-tracking algorithms [4, 5], which find the
minimum for each frequency bin using a short time window;
time-recursive averaging algorithms [6, 7, 8, 9], which aver-
age over time in order to provide the noise estimation; and
histogram-based algorithms [10], in which the amplitude his-
togram is calculated for different frequency bands and the noise
power is assumed to be the most occurring value.

The estimated a-priori SNR of the noise signal is then used
as an input for one of a few classical speech enhancement al-
gorithms. These algorithms multiply the original signal with
a gain calculated from the a-priori SNR, either by a direct
element-wise application, as in the Wiener filter, or using a reg-
ularization over the time-freqeuncy domain.
Supervised Noise estimation algorithms Supervised speech
denoising algorithms observe, during training, both the noisy
sample and the underlying clean samples and learn to map from
noisy samples to clean samples. The SEGAN method [11] em-
ploys an encoder-decoder architecture, which is trained with an
additional GAN loss [12].
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The current state-of-the-art method, called Deep Feature
Loss [13] uses a context aggregation network, and instead of
using the MSE loss between the output and the target, employs
a perceptual loss function. The perceptual loss is derived from
the deep layer activations of a network that is pre-trained for
audio classification tasks.
Deep Image Priors The DIP method [3] can be viewed a reg-
ularized inverse-problem method, in which the regularization is
given implicitly, by training a deep CNN to fit the data. Specifi-
cally, a CNN of a given architecture is trained to produce the
input image as its output, given a random tensor as the net-
work’s input. Assuming that the learning algorithm can fit a
clean image much faster than it fits a noisy signal, the algorithm
is stopped after it starts to fit the given image, but before it fits
all of its details. In other words, there is a “noise impedance”
effect that arises from the challenge of fitting the noisy signal,
which is unpredictable in nature.

3. Method
The same phenomenon of noise impedance can be observed in
audio, however, in a markedly different way that necessitates a
different algorithmic approach. In our experiments, we employ
the CNN architecture known as the WaveUnet [14], which con-
sists of an encoder-decoder architecture with skip-connections
between the two subnetworks. We create a random input signal
z of the same dimension as the noisy signal y = x + n (we
assume an additive noise model, and the clean signal x and the
noise n are unknown) and train the network f = fθ to fit the
noise, i.e., we solve the following minimization problem:

min
θ
‖fθ(z)− y‖, (1)

where θ is the parameter vector of the function f , i.e., the
weights and biases of this network.

As can be seen in the example given in Fig. 1, the network
fits clean speech or music signals much faster than it fits noise
signals. However, unlike the situation in computer vision, there
is little difference in the coarse behavior between the clean sig-
nal and the signal with the added noise.

While in images, the signal recovered by the network fθ(z)
during training becomes very similar to x, before it starts to re-
semble y, in audio the situation is different. As can be seen in
Fig. 2, at every iteration i of training, the current network, which
we denote as fi, produces a signal fi(z) that is only partly de-
noised. In addition, while in images the method converges to a
stable solution, i.e., fi(z) ∼ fi+1(z) after a few training itera-
tions [3], this is not the case in audio. In the case of audio, the
network output rapidly changes between iterations.

Moreover, the noise-free signal x was never reached in our
experiments, even after extremely long training sessions. This
can also be seen in the baseline experiment we perform (Sec. 4),
in which we report the minimal error obtained when training
the network (mini ‖fi(z) − x‖). This hindsight experiment,
which would have produced a good result in computer vision,
produces poor outputs in audio.

The discussion above does not mean that f does not evolve
during training. As can be seen in Fig. 3, as the iterations
progress, the output of f becomes more expressive, and the net-
work models additional frequencies in the signal.

Based on these observations, we propose the method de-
picted in Alg. 1 for estimating the a-priori SNR of the clean
signal. The input to the method is the signal y. Its output is a
mask of the dimensions of the signal’s STFT, with values in the
range [0,1].

Algorithm 1 The denoising with network priors method

Input: n: noisy input, t: number of iterations
1: θ0 ← XavierInit() . Initialize the weights of f0
2: z ∼ N(0, 1) . Initialize the random vector z
3: Y0 ← STFT (f0(z))
4: C = 0
5: for i← 1 : t do
6: θi ← semi argminθ ‖fθ(z)− y‖ . One training

iteration on fi−1, starting with θ = θi−1 obtaining fi
7: Yi ← STFT(fi(z))
8: Hi ← (| |Yi| − |Yi−1| |)/|Yi| . Absolute differences
9: p1 ← percentile(Hi, 10)

10: p2 ← percentile(Hi, 90)
11: Hi ← max(min(Hi, P2), P1) . Clip values
12: C ← C +Hi . Accumulate the differences
13: end for
14: M = (max(C)− C)/(max(C)−min(C)) . Normalize
15: return M . Estimated a-priori SNR of the signal

After computing a random z vector in line 2, the method
undergoes an iterative process for t iterations. Unlike the situa-
tion in computer vision, in speech, and other audio signals that
we tried, the network f cannot easily fit y. Early stopping is,
therefore, not a major concern, and we can choose any number
of iterations t that is large enough.

Each iteration consists of the following steps, where i is the
iteration index. First, in line 6 of the algorithm, the network
fi−1 is trained for one iteration, obtaining fi. Then, in line 7,
one computes fi(z) and its STFT Yi. We next compute Hi,
which is the absolute difference between |Yi−1| and |Yi| nor-
malized by the latter.

In order to avoid extreme values, every value in Hi that is
above the 90th percentile or below the 10th percentile is clipped.
An accumulator C sums the resulting matrices (line 12). The
accumulator would have high values in the coordinates of the
time-frequency domain, in which there is the least stability in
the reconstruction of y by the network f .

Once the t iterations are over, C is normalized to be in the
range of [0, 1] (line 14). High accumulated variability implies
noise and we, therefore, flip the values, before returning the
mask M .

With this estimation of the a-pirori SNR, a classical denois-
ing method, such as LSA [2] or the Weiner filter can be used to
perform denoising. In our experiments, we employ the former.

4. Experiments
When applying our method, we employ a WaveUnet with six
layers and 60 filters per layer. Each mask filter was produced
after t = 5000 iterations using the Adam optimizer with a learn-
ing rate of 0.0005. The method seems insensitive to either of
these parameters.

Noisy speech samples were provided by the authors of [16].
For the purpose of our work, only the test set has been used.
This test set is composed by mixing multiple speakers with 5
different noise types and 4 different SNR setting (2.5, 7.5, 12.5
and 17.5 dB). The original 48 kHz files were downsampled to
16 kHz, the same as other baseline methods [13, 11]. The spec-
trograms are obtained by using 32 ms Hann window and 8 ms
hop length.

For the purpose of computing the results of the baseline un-
supervised denoising algorithms, the open source metrics evalu-



(a) (b) (c)

Figure 1: Typical loss profiles obtained during training for a signal that is clean, noisy, or entirely noise. (a) first 2000 iterations. (b)
zoom-in to the first 50 iterations. (c) zoom in to iteration 250 onward.

Table 1: Quantitative evaluation denoising. A higher score means better performance.

Approach Supervised CSIG CBAK COVL PESQ SSNR

SEGAN [11] yes 3.48 2.94 2.80 2.16 7.73
Deep Feature Loss [13] yes 3.86 3.33 3.22 - -

MCRA [6] no 2.23 2.36 1.91 1.80 5.17
IMCRA [7] no 2.49 2.53 2.13 1.92 5.89
MCRA2 [9] no 2.39 2.50 2.08 1.97 5.92
Martin [5] no 2.48 2.61 2.21 2.12 6.37
Doblinger [4] no 2.55 2.66 2.29 2.21 6.48
Hirsch [10] no 2.67 2.66 2.35 2.21 6.26
Connected Frequencies [8] no 2.73 2.66 2.38 2.21 6.18
Wiener [15] no 3.23 2.68 2.67 2.22 5.07
Ours no 3.08 2.84 2.67 2.39 7.27

Best fi(z) hindsight 3.04 2.36 2.39 1.81 1.59
Averaged fi(z) no 3.13 2.39 2.47 1.87 1.66
Noisy Samples no 3.35 2.44 2.63 1.97 1.68

ation and noise estimation toolbox [17] was used. The statistics
of the supervised baselines were taken from the respective pa-
pers [11, 13].

Multiple quality scores are used to measure the success of
the methods, including (1) CSIG: Mean opinion score (MOS)
predictor of signal distortion, (2) CBAK: MOS predictor of
background-noise intrusiveness, (3) COVL: MOS predictor
of overall signal quality, (4) PESQ: Perceptual evaluation of
speech quality, and (5) SSNR: Segmental SNR.

All unsupervised methods were post-processed by a high-
pass filter with a cutoff frequency of 60 Hz, to remove noise
below the human speech base frequency. The noise cleaning
method used is MMSE-LSA [2], and the various measures were
computed by using the open source toolbox mentioned above.

A sample result is give in Fig. 4, and the statistics are re-
ported in Tab. 1. As can be seen from the table, our method
outperforms all unsupervised literature methods in all metrics,
with the exception of the CSIG metric, in which it is the second
highest method. The method is also largely comparable to the
SEGAN method [11], despite not being trained on any sample
outside the single sample y, while SEGAN is fully supervised.
Our unsupervised method is outperformed by the Deep Feature
Loss method [13], which enjoys both a large fully supervised
training set and a strong pretrained perceptual loss.

We also present the results of a baseline, in which the best
network output obtained during training fi(z), i = 1..t is re-
turned. This happens in hindsight, by comparing it to the clean
signal x. As can be seen, the statistics for this result are very
similar to those of the original noisy signal. One can also ob-
serve that averaging multiple network reconstructions fi(z),
i = 250, 500, 750, . . . , 5000, does not lead to an acceptable
result. This is in contrast to the application of deep network pri-
ors in computer vision [3], where the network produces clean
outputs during its training.

The samples, up to the conference file size limit, are at-
tached as supplementary. More samples can be found next to
our code at https://github.com/mosheman5/DNP.

5. Conclusions
The advent of deep learning has led to effective supervised de-
noising algorithms. However, as far as we know, little progress
has been made in the unsupervised domain. In this work, we
explore the usage of deep network priors for this task and ob-
serve that the approach used to employ these priors in images
is not suitable for audio signals. We, therefore, develop a new
method, which is shown to outperform the unsupervised meth-
ods and even approach the quality of the supervised methods.

https://github.com/mosheman5/DNP
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Figure 2: Instability during training. (a-d) the network output fi(z) for four consecutive iterations. (e-g) the difference between pairs
of consecutive iterations. (h) the spectrogram of the clean signal

(a) (b) (c) (d)

Figure 3: Progress during training. (a) iteration 25. (b) iteration 100. (c) iteration 250. (d) iteration 1000. The low frequencies are
learned first, and the higher frequencies follow.

(a) (b) (c) (d)

Figure 4: Sample results. (a) The spectrogram of the clean signal x. (b) The spectrogram of the noisy signal y. (c) The a-priori mask
of the signal M returned by our method. (d) The mask obtained by the Connected Frequencies [8] method.
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