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Abstract
We previously have applied deep autoencoder (DAE) for noise
reduction and speech enhancement. However, the DAE was
trained using only clean speech. In this study, by using noisy-
clean training pairs, we further introduce a denoising process in
learning the DAE. In training the DAE, we still adopt greedy
layer-wised pretraining plus fine tuning strategy. In pretrain-
ing, each layer is trained as a one-hidden-layer neural autoen-
coder (AE) using noisy-clean speech pairs as input and output
(or transformed noisy-clean speech pairs by preceding AEs).
Fine tuning was done by stacking all AEs with pretrained pa-
rameters for initialization. The trained DAE is used as a filter for
speech estimation when noisy speech is given. Speech enhance-
ment experiments were done to examine the performance of the
trained denoising DAE. Noise reduction, speech distortion, and
perceptual evaluation of speech quality (PESQ) criteria are used
in the performance evaluations. Experimental results show that
adding depth of the DAE consistently increase the performance
when a large training data set is given. In addition, compared
with a minimum mean square error based speech enhancement
algorithm, our proposed denoising DAE provided superior per-
formance on the three objective evaluations.
Index Terms: Deep autoencoder learning, autoencoder, noise
reduction, speech enhancement.

1. Introduction
Estimating clean speech from noisy ones is very important for
many real applications of speech technology, such as automatic
speech recognition (ASR), and hearing aids. Many noise re-
duction and speech enhancement methods have been proposed,
such as Wiener filtering, minimum mean square error (MMSE)
based estimation, and signal subspace method [1]. Most of
them focused on exploring the statistical difference (mainly fo-
cus on the second order statistical structure) between speech and
noise. The performance improvement is guaranteed if noise and
speech is separable in the explored space. High order statisti-
cal information exploration for noise reduction was also pro-
posed in which a function approximation in a reproducing ker-
nel Hilbert space method was applied for speech estimation [2].
However, the kernel function was manually given which may
not be efficient for speech processing.

Neural network with nonlinear processing units can be used
to learn high order statistical information automatically and can
be used for noise reduction. In order to efficiently learn the sta-
tistical information, it is believed that a deep network (with mul-
tiple hidden layers) is preferred than a shallow network (with
single or less hidden layers) [3]. In order to efficiently train a
deep network, many training algorithms were proposed [4, 5, 6].
The basic strategy is to train a deep network with greedy layer
wised pretraining plus fine tuning. With this strategy, deep
learning was successfully applied in speech feature extraction

and acoustic modeling [8]. Different from their applications to
acoustic modeling, we have applied deep autoencoder (DAE)
for noise reduction and speech enhancement [7]. In our previ-
ous study, the DAE was trained only using clean speech data set.
Both the input and output of the DAE are clean speech. When
there comes a noisy speech, the denoising was done as project-
ing the noisy speech into the clean speech signal subspace (or
basis functions) expanded by the DAE. In this case, the DAE is
trained to only encode clean speech statistical information. In
this study, we further advance our study by explicitly introduc-
ing a denoising process in training the DAE. In training, noisy
speech is input to the DAE, and clean speech is set as the out-
put. Based on this processing, the DAE explicitly learns the
statistical difference between clean and noisy speech. The basis
functions expanded by the DAE try to emphasize speech sta-
tistical information by considering the information from both
speech and noise.

Denoising autoencoder was already used in image process-
ing and other applications, particularly applied to extract noisy
robust feature for classification [9]. In their study, the input to
each AE was bit-masked or distorted version of clean features,
such as binary masked features, which is not suitable for speech
processing. For noise reduction and speech enhancement, we
make noisy data set from clean ones by adding many types of
noise to clean speech, and training each AE using noisy-clean
speech pairs or transformed pairs. Based on denoising autoen-
coder concept, recurrent denoising autoencoder was proposed
for reducing noise in speech feature extraction for ASR [10]. In
our study, we focus on speech enhancement problem by simply
stacking many denoising autoencoders without any recurrent
connections, and evaluate the performance based on noise re-
duction, speech distortion, and perceptual evaluation of speech
quality criteria.

The paper is organized as follows. Section 2 introduces the
basic architecture of deep autoencoder with explicit denoising
processing. Section 3 gives definitions of the evaluation crite-
ria which will be extensively used in experiments. Section 4
showed detailed experimental results and evaluations. Discus-
sions and conclusion are given in section 5.

2. Deep denoising autoencoder
Although restrict Boltzmann machine (RBM) was firstly intro-
duced to build a deep belief network (DBN) [4], it is difficult
for traditional optimization algorithms to be used for training
the network. As a substitute, the neural autoencoder (AE) is an
equivalent module to the RBM in building a DAE [5]. One
of the advantages of using AE and DAE is that many tradi-
tional optimization algorithms are ready to be used in train-
ing. Previously, we adopted the DAE for noise reduction and
speech enhancement [7]. However, the DAE was trained using
clean speech data set. Different from the usage of denoising au-
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Figure 1: Training neural autoencoder with noisy-clean speech
pairs.

toencoder in robust feature extraction [9], we use a noisy-clean
speech pair to train the AE as shown in Fig. 1. This is a one hid-
den layer neural autoencoder trained with noisy speech as input
and clean speech as output. It includes one nonlinear encoding
stage and one linear decoding stage for real valued speech as:

h (yi) = σ (W1yi + b)
x̂i = W2h (yi) + c,

(1)

where W1 and W2 are encoding and decoding matrix as the
neural network connection weights, respectively. Usually, tied
weight matrix, i.e., W1 = W2

T = W, is used as one
type of regularization. b and c are the vectors of biases of
input and output layers, respectively. The nonlinear function
of hidden neuron is a logistic function defined as σ (x) =
(1 + exp (−x))−1

. The parameters are determined by optimiz-
ing the following objective function as:

L (Θ) =
∑

i

‖xi − x̂i‖2
2, (2)

where Θ = {W,b, c} is the parameter set, and xi is the clean
speech corresponding to the noisy version yi.

Besides using tied weights, incorporating regularization on
weights and hidden neural output can help for a better gener-
alization in order to avoid overfitting. For example, the weight
decay and sparse regularization on outputs of hidden neurons
are formulated as:

J (Θ) = L (Θ) + α ‖W‖2
2 + βρ (h (y)) , (3)

where ‖W‖2
2 =

∑
i,j

w2
ij . ρ (h (y)) is a regularization func-

tion on the hidden neural outputs. α and β are the regulariza-
tion weighting coefficients. In our study, we set α = 0.0002,
and β = 0 (we will consider sparse regularization in our future
work). Then the parameter set can be obtained as:

Θ∗ Δ
= arg min

Θ
J (Θ) (4)

The optimization of Eq. (4) can be solved by using many uncon-
strained optimization algorithms. In this study, a linear search
based quasi-Newton optimization algorithm is used to estimate
(W∗,b∗, c∗) [11].

By stacking several AEs, a DAE can be built. We adopt
greedy layer wised pretraining plus fine tuning to train the DAE.
In pretraing stage, when adding one more hidden layer, the in-
put of the next AE is the output of the preceding hidden layer.
In denoising case, the transformed noisy-clean speech pairs will

be used for training. For example, as shown in Fig. 1, the train-
ing pair for the first AE is y and x, and then the training pair
for the next AE will be h (yi) and h (xi). After pretraining of
each autoencoder in a layer by layer manner, all the layers are
stacked to form a deep autoencoder for fine tuning. In fine tun-
ing stage, the initial network parameters are fixed as the param-
eters obtained from pretraining stage. Based on these training
procedures, it is possible that the final solution is better than
training the DAE with a random initialization.

3. Evaluation criteria
We focus on the noise reduction and speech enhancement task.
Therefore, in this study, we evaluate the performance of the neu-
ral network with the following three criteria which are widely
used in speech enhancement literature, namely, noise reduction,
speech distortion, and perceptual evaluation of speech quality
(PESQ) [1]. Since we will use them extensively in our experi-
ments, we briefly give their definitions in this section. The mea-
sure of noise reduction is defined as:

Reduct
Δ
=

1

N ∗ d

N∑

i=1

|x̂i−yi| (5)

The measure of speech distortion is defined as:

Dist
Δ
=

1

N ∗ d

N∑

i=1

|x̂i−xi| (6)

In these two definitions, the average of absolute difference be-
tween estimated signal and noisy or clean speech is used. N is
the total number of testing data, and d is the dimension of the
input data (size of the first layer of the DAE). Based on noise
reduction criterion (it is denoted as “Reduct” in experiments),
the larger the value, the better quality of the restored speech.
However, reducing much noise inevitably causes speech distor-
tion. Based on speech distortion measurement (it is denoted as
“Dist” in experiments), the less the value, the better quality of
the restored speech is.

In addition to these two objective criteria, perceptual evalu-
ation of speech quality (PESQ), which is a mean opinion score
(MOS) like objective evaluation, is also used to evaluate the
quality of the restored speech. Although it is not exactly cor-
responding to subjective evaluation, it shows high correlation
to MOS [1]. The feature used in training the DAE is Mel
frequency power spectrum (MFP). However, the PESQ evalu-
ation needs waveform for evaluation. After getting the restored
MFP, we perform an inverse transform to synthesize the restored
speech with phase information of noisy speech. For consistency
in using MFP for measuring the PESQ, the reference signal
is also inverse synthesized from clean MFP. The PESQ score
ranges from -0.5 to 4.5 corresponding to low to high speech
quality.

4. Experiments and evaluations
In this section, we evaluate the deep denoising autoencoder on
speech enhancement task. A clean continuous Japanese speech
data set with 350 utterances was used for training, and 50 ut-
terances for testing. Noisy data set was made by adding two
types of noises (factory and car noise signals) to the clean data
set. Three levels of signal to noise ratio (SNR) were made as
0, 5, and 10 dB. The MFP with 40 filter bands was used as
the feature. The feature was extracted from 16 ms windowed
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Table 1: Effect of training data set size (hidsize 100)

Training set size 10 k 40 k 80 k

Reduct (dB) 1.99 1.94 1.93

Dist (dB) 0.60 0.48 0.47
PESQ 2.80 3.30 3.33

Table 2: Effect of training data set size (hidsize 300)

Training set size 10 k 40 k 80 k

Reduct (dB) 2.01 1.94 1.93

Dist (dB) 0.61 0.47 0.44
PESQ 2.77 3.32 3.44

signal with 8 ms frame shift. The inputs to the DAE are MFP
spectral patches. Each patch is selected from several (11 in this
study) continuous frames of the spectrum. 80,000 MFP spectral
patches from the training speech are randomly selected. Differ-
ent from making noisy training data set as in [9], the noisy MFP
spectral patches were selected according to the clean MFP spec-
tral patches, i.e., exactly the same time locations in utterances.

In ASR application, one of the most important contributions
from deep learning framework is that long temporal window
data can be concatenated to train the model. In our experiments,
we also have compared the speech enhancement performance
based on models trained with different size of input spectral
patches. We increased the sizes of spectral patches to be 3, 7,
and 11 frames. Correspondingly, the dimensions of input to the
autoencoder are 120, 280, and 440, respectively. In our experi-
ments, we find that increasing input patch size consistently im-
proved the speech enhancement performance but with the cost
of increasing model complexity (large size of model parameters
with large training patch size). In addition, when patch size is
larger than 11 frames, there is no significant improvement any
more (less than 0.01 dB improvement based on speech distor-
tion measure, and no improvement based on PESQ measure).
In our following experiments, 11-frame patch size was used.

4.1. Effect of training data set size

For a given AE network, if training data set size is small, the
training may cause over-fittings, which result in bad generaliza-
tion. Therefore, large amount of training data set is preferred.
However, training with large amount of training data is time
consuming, and the network may be updated slowly after it is
trained in some degree. In order to examine the performance for
speech restoration based on different training data set size, we
trained a basic denoising AE (as shown in Fig. 1) with training
data set size of 10 k, 40 k, and 80 k (MFP spectral patches),
respectively. The factory noise with SNR 10 dB condition is
considered. The performance of the restoration is measured
based on the three criteria (refer to section 3), and the results
are shown in tables 1, 2, and 3 for hidden layer size of 100,
300, and 500, respectively. From these three tables, we can see
that increasing training data set size always helps in improving
the quality of the restored speech based on “Dist” and “PESQ”
criteria, but with a little decrease in noise reduction. By compar-
ing the first columns in tables 1, 2 and 3, we can see that when
training data set size is small, e.g., 10 k, increasing the number
of hidden neurons does not help to improve the restoration per-
formance. However, when large training data set is used, e.g.,
80 k, increasing the number of hidden neurons helps a lot (by
comparing the third columns in tables 1, 2 and 3).

Table 3: Effect of training data set size (hidsize 500)

Training set size 10 k 40 k 80 k

Reduct (dB) 2.01 1.94 1.93

Dist (dB) 0.62 0.47 0.43
PESQ 2.64 3.36 3.52

Table 4: Performance regarding to hidden layer size

hidsize 100 300 500

Reduct (dB) 1.93 1.93 1.93
Dist (dB) 0.47 0.44 0.43

PESQ 3.33 3.44 3.52

4.2. Effect of hidden layer size

Intuitively, increasing the number of hidden neurons helps to
increase the capacity of the AE for function approximation. For
a clear look at how the hidden layer size affect the restoration
performance, we summarize the results in table 4 for training
data set size of 80 k with differen size of hidden neurons. From
this table, we can see that increasing the number of hidden neu-
rons improved the speech restoration. However, as we have dis-
cussed in subsection 4.1, over-fitting may occur for large net-
work since more parameters need to be trained in large network
than in small network, particularly when training data set size
is small. From the results in subsections 4.1, and 4.2, we can
see that a tradeoff of between the size of training data set and
size of hidden neurons must be considered when designing the
denoising autoencoder.

4.3. Effect of depth

In most deep learning studies, the general conclusion is that in-
creasing the depth of the neural network always helps in perfor-
mance either for pattern classification or for encoding [3, 4, 12].
Similarly, we increase the depth of the network by stacking sev-
eral AEs to form a DAE, and carry out speech denoising ex-
periments. The experimental condition was set the same as in
subsection 4.1. In addition, the numbers of hidden neurons 100
and 300 are investigated, and the depth is increased from 1 to
3. The results are shown in tables 5 and 6 (80 k training data
set). From these tables, we can see that increasing the depth
of the DAE improves the quality of the restored speech based
on speech distortion and PESQ criteria, and with only a little
decrease in noise reduction.

We further carried out experiments by setting the number of
hidden neurons to 500, and increased the depth from 1 to 3. The
results are shown in table 7. From this table, however, we can
not see the same tendency as in tables 5 and 6. Only network
with depth 2 improved the performance. Increasing depth to 3,
however cannot improve on DAE with depth 2. One possible
reason is that when increasing the depth, the training data set
size is not sufficient to fully train the large number of network
parameters (as discussed in subsection 4.1).

Table 5: Effect of depth in DAE

hidsize*layer 100*1 100*2 100*3

Reduct (dB) 1.93 1.93 1.93
Dist (dB) 0.47 0.44 0.43

PESQ 3.33 3.39 3.39
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Table 6: Effect of depth in DAE

hidsize*layer 300*1 300*2 300*3

Reduct (dB) 1.93 1.92 1.92

Dist (dB) 0.44 0.40 0.40
PESQ 3.44 3.52 3.61

Table 7: Effect of depth in DAE

hidsize*layer 500*1 500*2 500*3

Reduct (dB) 1.93 1.91 1.92

Dist (dB) 0.43 0.40 0.42

PESQ 3.52 3.61 3.52

4.4. Comparison with traditional noise reduction algo-
rithms

There are many speech enhancement algorithms [1], most of
them are based on a gain function estimation for noisy speech
filtering with a noise tracking algorithm. In our comparison, we
took the MMSE plus improved minimum controlled recursive
averaging (IMCRA) noise tracking algorithm [13].

Two types of noises (car and factory noises) and three SNR
conditions (0, 5, and 10 dB) were tested. The DAE with depth 3
and hidden layer size 100 was examined. The DAE was trained
for each noise type. First, we compared the quality of the re-
stored speech visually on the spectrum. The restored spectrum
for factory noise in SNR 10 dB condition is shown in Fig. 2.

Noisy
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100 200 300

20

40
Clean

100 200 300

20

40

DAE
100 200 300
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Figure 2: Horizontal axis: time frame index, vertical axis: Mel
filter band index; clean speech (upper-left), and noisy speech
(upper-right); restored speech based on DAE (lower-left) and
MMSE (lower-right).

Comparing the two restored spectrum, we can see that more
severe speech distortion as well as more noise residues in re-
stored spectrum by the MMSE method than by the DAE. We can
expect a better quality improvement by using the DAE than us-
ing the MMSE. We further quantitatively compared the restora-
tion quality based on the three criteria defined in section 3. The
comparisons are shown in tables 8, 9, and 10. From these three
tables, we can see that speech restoration based on DAE sig-
nificantly outperformed that of based on the MMSE, only with
the exception of car noise condition based on noise reduction
criterion.

Table 8: Evaluation based on noise reduction (dB).
Evaluations Noise reduction

SNR (dB) Factory noise Car noise
MMSE DAE MMSE DAE

0 2.35 2.72 1.05 0.83

5 2.08 2.32 0.92 0.63

10 1.84 1.93 0.82 0.47

Table 9: Evaluation based on speech distortion (dB).

Evaluations Speech distortion

SNR (dB) Factory noise Car noise
MMSE DAE MMSE DAE

0 1.56 0.59 0.63 0.27
5 1.28 0.47 0.59 0.24

10 1.05 0.43 0.57 0.21

Table 10: Evaluation based on PESQ.
Evaluations PESQ

SNR (dB) Factory noise Car noise
MMSE DAE MMSE DAE

0 1.22 2.82 2.90 3.98
5 1.73 3.19 3.05 4.09

10 2.15 3.39 3.17 4.18

5. Conclusion and discussions
Deep learning has been successfully applied in pattern classifi-
cation and signal processing, particularly in acoustic modeling
for ASR. Based on the same idea, we have applied the DAE for
noise reduction and speech enhancement [7]. In this study, we
further introduced a denoising processing in training the AE by
using noisy-clean speech pairs. The advantage of this method
is that the DAE automatically learns the statistical difference
between speech and noise which helps to separate speech and
noise for speech enhancement. In our experiments, we con-
firmed that increasing depth of the DAE helps for speech en-
hancement. In addition, compared with traditional speech en-
hancement methods, the DAE can explore nonlinear and high
order statistical information for speech enhancement. It is sim-
ilar as projecting noisy speech in a nonlinear kernel space for a
better separation of noise and speech by using high order statis-
tical information. However, the nonlinear kernel space explored
by the DAE is automatically learned from noisy-clean speech
pairs which is much more suitable for denoising than using a
given kernel function.

Many issues need to be further investigated. The first one
is how to effectively incorporate prior knowledge in modeling
the DAE. For example, speech signal has many well structured,
multi-scale temporal-frequency patterns and transitions. It can
be introduced in a hierachical deep network structure for speech
enhancement. The second is concerned with how to make the
DAE generalize well. We have introduced regularization tech-
niques in section 2. Considering the sparse distribution property
of speech, sparse regularization can be a promising regulariza-
tion technique for DAE [14]. In our future work, we will design
a proper sparse regularization technique for DAE. Lastly, in ex-
periments, only two types of noise conditions were tested. In
the future, more noise conditions as well as large data set will
be examined.
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