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Abstract: This paper provides a literature review on Adaptive Line Enhancer (ALE) methods based on 
adaptive noise cancellation systems. Such methods have been used in various applications, including 
communication systems, biomedical engineering, and industrial applications. Developments in ALE in 
noise cancellation are reviewed, including the principles, adaptive algorithms, and recent modifications 
on the filter design proposed to increase the convergence rate and reduce the computational complexity 
for future implementation. The advantages and drawbacks of various adaptive algorithms, such as the 
Least Mean Square, Recursive Least Square, Affine Projection Algorithm, and their variants, are 
discussed in this review. Design modifications of filter structures used in ALE are also evaluated. Such 
filters include Finite Impulse Response, Infinite Impulse Response, lattice, and nonlinear adaptive 
filters. These structural modifications aim to achieve better adaptive filter performance in ALE systems. 
Finally, a perspective of future research on ALE systems is presented for further consideration. 
 
Key words: Adaptive filters, noise cancellation, adaptive line enhancer, non-stationary noise, adaptive  
                    algorithms. 

 
INTRODUCTION 

 
Noise cancellation has recently gained much attention as a method to eliminate noise contained in useful 

signals (Sambur 1978, Widrow et al. 1985). This technique has been applied in various communication and 
industrial appliances, such as hands-free phones, machineries, and transformers (Hernandez 2003, Wu et al. 
2010). In addition, noise cancellation has been implemented in biomedical signal and image processing, echo 
cancellation, and speech enhancement (Sasaoka et al. 2009, Ahmad et al. 2011, Kim et al. 2011). In acoustics 
applications, noise from the surrounding environment severely reduces the quality of speech and audio signals. 
Therefore, an adaptive noise cancellation system is used to suppress noise and enhance speech and audio signal 
quality. 

With a basic concept first introduced by Widrow, the Adaptive Noise Canceller (ANC) removes or 
suppresses noise from a signal using adaptive filters that automatically adjust their parameters (Widrow et al. 
1975). The ANC uses a reference input derived from single or multiple sensors located at points in the noise 
field where the signal is weak or undetectable. Adaptive filters then determine the input signal and decrease the 
noise level in the system output. The parameters of the adaptive filter can be adjusted automatically and require 
almost neither prior signal information nor noise characteristics.  

However, the computational requirements of adaptive filters are very high due to long impulse responses, 
especially during implementation on digital signal processors. Convergence becomes very slow if the adaptive 
filter receives a signal with high spectral dynamic range (Haykin 2002), such as in non-stationary environments 
and colored background noise. In the last few decades, numerous approaches have been proposed to overcome 
these issues. For example, the Wiener filter, Recursive-Least-Square (RLS) algorithm, and the Kalman filter 
were proposed to achieve the best performance of adaptive filters (Albert et al. 1991, Kazemi et al. 2008, Ding 
et al. 2009). Apart from these algorithms, the Least Mean Square (LMS) algorithm is most commonly used 
because of its robustness and simplicity. However, the LMS suffers from significant performance degradation 
with colored interference signals (Vaseghi 2008). Other algorithms, such as the Affine Projection algorithm 
(APA), became alternative approaches to track changes in background noise; but its computational complexity 
increases with the projection order, limiting its use in acoustical environments (Sergio Ramirez Diniz 2008). 

An adaptive filtering system derived from the LMS algorithm, called Adaptive Line Enhancer (ALE), was 
proposed as a solution to the problems stated above. According to Widrow (Widrow et al. 1975, Widrow et al. 
1976), ALE is an adaptive self-tuning filter capable of separating the periodic and stochastic components in a 
signal. The ALE detects extremely low-level sine waves in noise, and may be applied in speech with noisy 
environment. Different from other ANCs with multi-sensors, the ALE simply uses a single sensor and is 
therefore easier to control. Furthermore, unlike ANCs, ALEs do not require direct access to the noise nor a way 
of isolating noise from the useful signal. In literature, several ALE methods have been proposed for acoustics 
applications. These methods mainly focus on improving the convergence rate of the adaptive algorithms using 
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modified filter designs, realized as transversal Finite Impulse Response (FIR), recursive Infinite Impulse 
Response (IIR), lattice, and sub-band filters (Widrow et al. 1985, Cho 1990, Abid Noor et al. 2008, Jing et al. 
2008).  

 

 
 

Fig. 1: Block diagram of adaptive noise cancellation system 
 

 
 

 
Fig. 2: Block diagram of adaptive line enhancer 

 
The present paper critically reviews literature on ALE and the methods proposed in previous studies. 

Recent developments in adaptive algorithms are discussed together with structural modifications in adaptive 
filters used in ALE, which includes a detailed discussion about each method. Finally, a perspective on future 
research is suggested for further consideration. 
 
Anc And Ale: 

The ANC and the ALE are two adaptive filtering systems with similar mechanisms but slightly different 
filter designs. The original ANC uses two sensors to receive the target signal and noise separately, whereas the 
ALE uses only a single sensor to detect the target signal buried in noise, though it may use the same adaptive 
algorithm as the ANC.  

A block diagram of a dual-input adaptive noise cancellation system with a primary sensor, a reference 
sensor, and an error junction is shown in Fig. 1. The primary sensor supplies a signal and a noise uncorrelated 
with the signal )(ˆ)( nxns   as the primary input d(n) to the canceller. A second sensor, the reference sensor, 

receives a noise x(n), which is uncorrelated to s(n) but correlated in some unknown way with the noise )(ˆ nx , to 
provide the reference input to the adaptive filter. The x(n) is transmitted over unknown channel A(z) and 
received by the primary sensor, then filtered by the adaptive filter to produce an output y(n) closely resembling 

)(ˆ nx . y(n) is subtracted from d(n) to produce the system output known as error signal, or e(n) = d(n) – y(n). The 

e(n) provides the system control signal and updates the adaptive filter coefficients, which help minimize residual 
noise (Haykin 2002). Fig. 2 shows a block diagram of ALE with a single sensor to detect )(ˆ)( nxns  or d(n). 

The ALE is in fact a degenerated form of ANC, consisting of a single sensor and delay z  to produce a 
delayed version of d(n), denoted by x(n), which de-correlates the noise while leaving the target signal 
component correlated. Ideally, the output y(n) of the adaptive filter in the ALE is an estimate of the noise-free 
input signal. Hence, the ALE capability to extract the periodic and stochastic components of a signal can also be 
known as an adaptive self-tuning filter (Widrow et al. 1985, Campbell et al. 2002). 

The ALE becomes an interesting application in noise reduction because of its simplicity and ease of 
implementation. However, to obtain the best performance in its computational process, the optimal approach is 
to execute ALE on a better convergence rate of adaptive algorithm with a less complex adaptive filter structure.  
 
Adaptive Algorithms: 

Attaining the best performance of an adaptive filter requires usage of the best adaptive algorithm with a fast 
convergence rate and low computational complexity. The LMS algorithm is the most commonly and widely 
used adaptive algorithm. Other adaptive algorithms that have been applied and developed to speed up the 
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adaptive process include the Normalized LMS (NLMS), RLS, and the APA. This section discusses these 
algorithms and their developments to gain a better understanding of adaptive filtering techniques. 

 
LMS Algorithm:  

The most widely used adaptive filtering technique is a version of the LMS algorithm, initially proposed by 
Widrow and Hoff (Widrow et al. 1960). The LMS is based on the steepest descent method, a gradient search 
technique to determine filter coefficients that minimize the mean square prediction of a transversal filter.  

The derivation of the LMS algorithm can be summarized as below. 

),()()( nnny T wx            (1) 

),()()()( nnndne T wx            (2) 

 
where the output of an adaptive transversal filter y(n) and the error signal e(n) are given by (1) and (2), 

respectively. 
In these equations, x(n) is the input signal vector, and w(n) is the weight vector of the adaptive transversal 

filter. Here, the equations use the current estimate of the weight vector. The weight update recursion of the 
conventional LMS algorithm is given by 

 
),()()()1( nnenn xww             (3) 

 
where µ is the step size parameter controlling the convergence rate within its suitable range. The step size 

value affects the convergence behavior of an LMS filter; a too low value of µ leads to extremely long 
convergence time of the algorithm, whereas a too high value of µ causes the algorithm to diverge, thus 
degrading the error performance of the adaptive filter. Therefore, choosing a suitable value for the step size is 
necessary when implementing the LMS algorithm as an adaptive filter. This concern has led to several attempts 
to control the step size, rather than choosing a fixed value or manually setting it in the LMS algorithm recursion. 
A good solution to this matter is time-varying step size, called Variable Step Size LMS algorithm (VSSLMS) 
(Aboulnasr 1997, Mader et al. 2000, Sasaoka et al. 2008, Mayyas et al. 2011). 

Two types of VSSLMS algorithm have been proposed based on the method of obtaining the step size 
control equation. The first type adjusts the step size parameter according to the location of the adaptive filter 
coefficients compared with its optimum; larger step size values are chosen when the adaptive filter coefficients 
are far from optimal (Aboulnasr 1997). However, this algorithm type relies on certain criterion in adjusting the 
step size values; most of the time, the first type does not accurately reflect the adaptation process. Moreover, the 
step size equation parameters must be tuned to obtain the best performance, according to environmental 
conditions of the application. The second type of VSSLMS avoids the above problems by choosing step size 
values close to the optimum value at each time instant (Koike 2002).  

The LMS algorithm has always been the ultimate choice in adaptive filtering because of its computational 
simplicity. LMS does not require off-line gradient estimations, repetition of data, or matrix inversion (Widrow 
et al. 1985, Haykin 2002, Sergio Ramirez Diniz 2008). Other features that attract usage of LMS algorithm are 
its proof of convergence in stationary environment, unbiased convergence to the Wiener solution, and stable 
behavior when implemented with finite-precision arithmetic. These advantages make the LMS the standard 
against other linear adaptive algorithms.  

However, this type of algorithm suffers from significantly degraded performance with colored interfering 
signals (Vaseghi 2008). Likewise, computational complexity increases as the length of the adaptive filter 
increases. This becomes a problem in acoustics applications that require long adaptive filters to model path 
response, such as echo and noise cancellation. Therefore, improvements to this algorithm have been made to 
overcome such problems. Variants of the LMS have been developed by modifying the parameters involved in 
the performance of adaptive filters. 

Numerous variants of LMS have been developed to best serve different applications. Well known variants 
are the NLMS, Leaky LMS, VSSLMS, and Filtered-X LMS (FXLMS) (Poularikas et al. 2006, Sergio Ramirez 
Diniz 2008). The weight update recursion of these versions and recent modifications of the LMS algorithm, 
such as the Frequency Response Shaped LMS (FRS LMS) and Hybrid LMS, are summarized in Table 1. 

 
NLMS Algorithm: 

The main drawback of the conventional LMS is the difficulty in choosing a suitable value for the step size 
parameter that guarantees stability. Therefore, the NLMS has been proposed to overcome this problem in 
controlling the convergence factor of LMS through modification into a time-varying step size parameter. The 
NLMS converges faster than the conventional LMS because it employs a variable step size parameter aimed at 
minimizing the instantaneous output error (Haykin 2002, Sergio Ramirez Diniz 2008).  
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The NLMS is defined as an extension of the LMS due to its step size parameter that is inversely 
proportional to the actual input signal energy. The second column of Table 1 shows the weight update recursion 
of NLMS. The value of µ has to be set within 0 and 2. A small value of γ is used to avoid possible division by 
zero. The NLMS has an advantage that exhibits potentially faster convergence speed than that of conventional 
LMS algorithm for both uncorrelated and correlated input data (Douglas et al. 1994). 

Other developments have also been proposed to obtain even better convergence rate than that of the NLMS 
algorithm, such as the family of proportionate NLMS algorithm in echo cancellation system, which updates the 
gains proportional to current tap weights (Duttweiler 2000). This method provides tremendously fast 
convergence speed but still entails a modest increase in computational complexity. Apart from this development, 
(Vega et al. 2008) proposed a variable step-size NLMS algorithm by optimizing the square of the a posteriori 
error using a robust statistics approach. They tested this algorithm in system identification and acoustics echo 
cancelation application, and showed the algorithm’s excellent performance even under severe conditions but 
with certain limitations. 

 
Table1: Variations of the LMS algorithm 

Algorithms Weight update recursion References 
Conventional LMS )()()()1( nnenn xww   (Widrow et al. 1960, 

Haykin 2002) 
Normalized LMS 

),()(
)()(

)()1( nne
nn

nn
T

x
xx

ww






 

 γ : small constant 

(Haykin 2002, Sergio 
Ramirez Diniz 2008) 

Leaky LMS ),()()()21()1( nnenn xww    

 γ : small constant 

(Poularikas et al. 2006) 

Variable Step Size LMS )()()()()1( nnennn xww   (Aboulnasr 1997, Mader 
et al. 2000, Mayyas et 
al. 2011) 

Filtered-X LMS ),(')()()()1( nnennn xww   

),()(ˆ)(' nnsn xx   

)(ˆ ns : the estimated response of the secondary path filter )(ns  

(Kuo et al. 1999) 

Frequency Response Shaped 
LMS 

  ),()()()1( nnenn xwFIh    

F = �F0, where � : constant 

(Kukrer et al. 2006) 

Hybrid LMS )(*)()(2)()1( nnennn xww    for 0 < n ≤ p, 

)(*)()(2)()1( 1 nnennn xRww    for n ≥ p + 1, 

p : switching point from LMS to NLMS algorithm 
R-1 = E[x*(n)xT(n)] 

(Chern et al. 1995) 

 
RLS Algorithm:  

Another potential alternative to overcome slow convergence in colored environments is the RLS algorithm, 
which uses the least squares method to develop a recursive algorithm for the adaptive transversal filter. RLS 
tracks the time variation of the process to the optimal filter coefficient with relatively very fast convergence 
speed, which is practical in applications such as speech enhancement, channel equalization, echo cancelation, 
sound control and radar. However, RLS has stability problems and increased computational complexity 
compared with the LMS-based algorithms (Haykin 2002, Vaseghi 2008). 

A summary of the RLS algorithm is shown as follows, which has been derived using the matrix inversion 
lemma from the Weighted Least-Squares algorithm (Sergio Ramirez Diniz 2008, Vaseghi 2008). 

 
Initial value: ,δ)0( -1IP    

Filter gain vector: 
,

)()1()(λ

)()1(
)(

nnn

nn
n

T xPx

xP
k




  (4) 

Error signal equation:  ),()1()()( nnndne T xw   (5) 

Filter coefficient 
adaptation:  

),()()1()( nennn kww   (6) 

Inverse correlation 
matrix: 

).1()()(λ)1(λ)( 11   nnnnn T PxkPP  (7) 

 
The error signal equation in (5) describes the filtering operation of RLS, and the filter coefficient adaptation 

equation in (6) delineates the algorithm adaptive process, whereby the tap-weight vector w(n) is updated by 
incrementing its old value by an amount equal to the product of error signal e(n) and the filter gain vector k(n). 
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Meanwhile, the filter gain vector and the inverse correlation matrix in (4) and (7), respectively, update the value 
of the gain vector itself. 

The main problems with RLS are the potential divergence behavior in finite-precision environments and 
high computational complexity, which is of order of N2, where N represents the filter length. The stability 
problems are usually caused by lost symmetry and positive definiteness of the matrix P(n). More robust 
implementations exist based on square-root factorization or QR decomposition of matrix P(n) (Vaseghi 2008). 
Variants of the so-called fast transversal algorithms with computational complexity of order N have been 
proposed for non-stationary environments (Peters et al. 1995, Papaodysseus 1999) and model systems for long 
impulse responses (Merched et al. 2001), but many of these variants suffer from stability problems when 
implemented in finite precision.  

 
APA: 

The APA can be viewed as an extension or generalization of the NLMS algorithm. In the coefficient update, 
APA reutilizes both past and present information, which is called data-reusing, whereas the NLMS algorithm 
uses only the current information. Ozeki and Umeda (Ozeki et al. 1984) initially studied this algorithm, and they 
proposed to reuse past multiple input vectors and update the weights of input vectors. The updating equations of 
standard APA for each iteration n are given by the following (Haykin 2002, Sergio Ramirez Diniz 2008): 

 

),()()()( nnnne T wxd   (8) 

),(]δ)()([)( 1 nennnt T  Ixx  (9) 

),()()()1( ntnμnn xww   (10) 
 
where desired and input signal vectors are given in (11) and (12) respectively. 

 
],)1()1()([)(  Pndndndn d  (11) 

].)1()1()([)(  Pnxnxnxn x  (12) 
 
Here, P is the projection order of APA, and µ is the step size parameter controlling the stability, 

convergence rate, and estimation error of the algorithm. 
The APA has significantly improved convergence rate compared with that of the NLMS algorithm when 

highly correlated signals are used. However, the computational complexity of APA increases with higher 
projection order. This algorithm converges faster when using a higher projection order with large step-size value, 
but causes a large estimation error. On the other hand, low convergence rate with low estimation error are 
obtained when a lower projection order and smaller step size value are used (Sankaran et al. 2000). These 
problems have led to numerous new ideas in conducting APA by making the parameters variable. 

An example is the Fast APA (FAPA), which increases the convergence rate when using a small step size 
with fixed projection order (Gay et al. 1995, Tanaka et al. 1999). Another version of APA with variable 
projection order has been proposed in (Kim et al. 2009), and called Evolutionary APA (E-APA). The projection 
order of the E-APA is automatically determined depending on the output error and a threshold. These two 
algorithms have recently been modified by applying the dichotomous coordinate descent (DCD) method, which 
has fewer multiplications and divisions (Zakharov et al. 2005, Albu et al. 2010). The DCD-FAPA has a similar 
performance with FAPA, whereas the DCD-E-APA has shown faster convergence speed with a smaller 
estimation error at reduced complexity compared with the standard APA.  

As far as the APA step size is concerned, a few approaches of variable step size APA (VSS APA) have 
been proposed to develop the optimal step size for APA (Shin et al. 2004, Mayyas 2010, Rey Vega et al. 2010). 
Moreover, the Dynamic Selection APA (DS-APA) has been presented in which weight is updated by selecting 
the optimum input vectors derived by the largest mean-square deviation (MSD) decrease method (Kong et al. 
2007). The DS-APA shows a relatively improved convergence performance, and small estimation error with 
low overall computational complexity compared with conventional APA. However, in terms of performance, 
most of these algorithms have only been compared with the standard APA, and still have relatively large 
estimation errors compared with the conventional NLMS. 

The APA has been shown as a promising approach to balance convergence speed and computational 
complexity, and serves as a feasible alternative to RLS. Although many APA variations have been derived and 
proposed, these algorithms must be compared by looking for the best algorithm with faster convergence rate, 
lower computational complexity, and smaller estimation error compared with standard algorithms. 
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Structural Modifications Of Ale: 

Widrow initially introduced the conventional ALE to eliminate noise based on the Widrow-Hoff LMS 
adaptive algorithm (Widrow et al. 1975). Since then, ALE structures have been developed using various 
methods to decrease its computational cost and achieve faster convergence rate. This section reviews and 
discusses ALE modifications using FIR, IIR, and sub-band filters, as well as other filter structures, such as 
cascade-form, parallel-form, and lattice-form.  

 
Adaptive FIR filter: 

For ALE design modification, the time domain FIR filter using adaptive filter weights and input has been 
initially proposed (Widrow et al. 1975, Zeidler et al. 1978) (McCool et al. 1980). The FIR filter is also known 
as the feedforward, non-recursive, or transversal filter in other literature, as numerous authors developed this 
filter type after its introduction.  

The ALE structure is referred to as FIR-ALE in some literature to differentiate other structures 
implemented in the ALE scheme. FIR-ALE has advantages for its simplicity and stability during adaptation. 
However, its computational complexity increases when a large number of coefficients are required for higher 
SNR of input signal. Fig. 2 shows the construction of FIR-ALE using FIR filters as adaptive filter, and Fig. 3 
shows the structure of the FIR filter, which is also called tap delay line filter. The structure in this figure is 
called direct form FIR, and can be specified by the following difference equation: 

,)()()(
1

0






L

k
k knxnwny  (13) 

where ∆ is the prediction distance of the filter, and any value ∆ of delay can be chosen. The delay ∆ de-
correlates the noise components in the filter input with respect to those in the primary input, while introducing a 
simple phase shift between sufficiently large input sinusoidal components (Treichler 1979). Prediction distance 
∆ has been studied and shown to allow improved frequency estimation performance for multiple sinusoids in 
white noise for stationary inputs (Zeidler et al. 1978). 

Obtaining the optimal value of ∆ has also been studied in several studies to achieve better performance for 
high SNR with multiple sinusoids embedded in the input signal (Zeidler et al. 1978, Egardt et al. 1983, 
Yoganandam et al. 1988). The FIR-ALE filter is also implemented using other methods of adaptive algorithms 
instead of the famous LMS. An example is the Linear Approximation Method (LAM) for real time 
implementation purpose (Yamamoto et al. 2003), which uses triangular approximation to obtain a high speed 
coefficient estimation of FIR filter for input signals with high SNR. However, this method is employed only for 
cases with a single sinusoid in white noise. Meanwhile, a detailed study was done by Ziedler (Zeidler 1990) to 
implement real-time ALE that considers the effect of signal bandwidth, input SNR, noise correlation, and noise 
non-stationarity restricted to the FIR filter using the LMS algorithm (Zeidler 1990). Another approach by Said 
(Said 2008) employed two FIR filters to form an adaptive feedback cross-coupled line enhancer in which the 
output of each filter becomes the input of the other. Said tested this structure using signals with white Gaussian 
noise and colored noise; the study showed this structure to have better SNR performance compared with other 
algorithms, such as the standard LMS and transfer domain adaptive filter. An advantage of this method is that 
no transformation process is required in the time domain adaptive filter. However, this method has only showed 
results using simulation and not real noisy signals. 

 
Adaptive IIR filter: 

 Subsequently, the IIR filter has been proposed as an alternative to the FIR filter-based ALE to decrease 
computational complexity. The IIR, also called recursive, is a filter in which the zeros and poles can be adapted. 
If the FIR and IIR filters utilize the same number of coefficients, the frequency response of the IIR filter can 
better approximate a desired characteristic. This filter requires fewer coefficients in most cases, especially when  
the desired model has poles and zeros (Diniz et al. 2010). Therefore, implementing the IIR filter is highly 
desirable compared with hundreds of taps in the FIR filter for some applications. However, the IIR filters are 
seldom used since they come with a number of difficulties, such as instability of the adaptive filter, slow 
convergence, error surface with local minima, and phase distortion (Diniz 2008). 

The IIR-ALE is constructed using the IIR filter as the adaptive filter of ALE. Fig. 4 shows the conventional 
structure of the adaptive IIR filter. This structure is called the direct-form IIR filter and can be determined by the 
following difference equation: 

    
 


M

m

N

m
mm mnxbmnyany

1 0

)(  (1
4) 

where N and M are the adaptive filter numerator and denominator orders, respectively. The main drawbacks 
of this structure are instability during adaptation and high coefficient sensitivities to quantization noise (Diniz 
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2008). Various attempts have been made to overcome these issues and the slow convergence speed mentioned 
earlier.  

 

 
 

Fig. 3: Block diagram of FIR-ALE filter. 
 

 
 

Fig. 4: Structure of ALE with direct-form adaptive IIR filter. 
 
Rao and Kung (Rao et al. 1984) initially developed the adaptive IIR filter using an adaptive notch filter to 

enhance and track sinusoids in additive, colored, or white noise. The developed filter requires a smaller filter 
length, which reduces adaptation error. However, the computational complexity of the coefficient update is 
relatively larger compared with that of the FIR-ALE. In addition, the developed filter requires half the number 
of parameters compared with the autoregressive moving average model, and also requires no additional order to 
handle more colored noise environments. Meanwhile, Fan and Jenkin (Fan et al. 1988) observed that the 
adaptive IIR filter can provide superior performance after convergence, but that it requires longer convergence 
time and is also more sensitive to the proper selection of filter order for echo cancellation application. Li et al. 
(Li et al. 1993) proposed a realization of high stability and high convergence speed adaptive IIR filter using 
second-order bandpass or notch filter for single sinusoid detection. Furthermore, IIR-ALE has showed a high 
convergence speed when applying a variable step size to update the filter coefficient and uncorrelated noise with 
maximum values of the filter Q-factor and input SNR. The second-order IIR filter has become a solution for 
transversal filters, which require a large number of taps to achieve sharp bandpass characteristic. Belt et al. (Belt 
et al. 1995) considered this approach to obtain sharp bandpass characteristics with only few parameters for 
faster convergence speed and accuracy in frequency estimation. Belt derived two separate optimization 
algorithms that perform simultaneously during ALE operation, showing that fast frequency tracking is possible 
and the IIR filter bandwidth is automatically adjusted to the bandwidth of the uninterrupted input signal. On the 
other hand, Bruno et al. (Bruno et al. 2005) presented a reduced complexity IIR filter based on the Steiglitz-
McBride method to avoid the local minima problem and allow a better compromise between filter order and 
modeling performance.  

The interference sinusoidal signal may be composed of a fundamental frequency as well as any harmonic 
frequencies. Simple second-order notch filters and higher order IIR notch filters can be used to filter out these 
frequencies. However, the second-order notch filter is insufficient because it contains only one deep notch in its 
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magnitude response, and a higher-order IIR notch filter is inefficient as it utilizes multiple adaptive filter 
coefficients. Therefore, an adaptive harmonic IIR notch filter has been proposed for efficient frequency 
estimation application in a multi harmonic frequency environment (Tan et al. 2009). This filter has been 
combined with an algorithm using a single adaptive coefficient to simultaneously estimate fundamental and 
harmonic frequencies. This kind of filter has been implemented on digital signal processors using a different 
structure of harmonic IIR notch filter (Guan et al. 2010). 

 
Other adaptive filter structures: 

IIR filters have also been implemented as adaptive filter on ALE systems to increase the convergence speed 
and decrease computational complexity. These filters have been structured using direct form, which is the 
simplest and easiest to realize. Instead of this structure, the adaptive filter has been developed and modified 
using other methods to improve its performance and meet application requirements, as well as to overcome the 
drawbacks of the previously discussed methods.  

In previous subsections, the direct form of IIR filters have been reviewed, but these structures have some 
difficulties in terms of stability, coefficient sensitivity, and output quantization noise (Diniz 2008). Therefore, 
alternate solutions have been proposed in the development of adaptive filters, such as implementation using 
cascade structure, parallel realization, and lattice structures to overcome these issues (David 1984, Kwan et al. 
1989, Cho 1990). All these structures allow easy stability monitoring, whereas the parallel form appears to be 
the most efficient in gradient computation. However, the standard parallel form may slowly converge when two 
poles approach each other (Diniz et al. 1993). These structures have been implemented using Field 
Programmable Gate Array and digital signal processors for various applications (Cousseau et al. 1996, 
Martinez-Peiro et al. 1999, Xiaojuan et al. 2007). In this subsection, the common alternate structures of adaptive 
filters, such as the cascade, parallel, and lattice form based on FIR and IIR filters, are presented and reviewed. 
Detailed descriptions on these structures can be found in text books about digital signal processing (Antoniou 
2006, Diniz et al. 2010, O'Shea et al. 2011). 
 
Cascade structure: 

The Nth order of the cascade form can be constructed by connecting several first- or second-order FIR or 
IIR filters in a series as shown in Fig. 5. The transfer function of the structure can be defined as follows for the 
cascade FIR filter and cascade IIR filter, respectively.  
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(a) Cascade IIR filter               (b) Cascade FIR filter 
 
Fig. 5: The second-order filter sections of (a) cascade FIR filter and (b) cascade IIR filter. 

 
N denotes the number of sections as N = M/2 for even-order filters, and N = (M +1)/2 for odd-order filter. 

The structures of cascade form filters have been developed and explored using various methods to improve their 
performances. 

The cascade FIR filter has been considered as an adaptive filter in early works, which aimed to achieve low 
complexity and low sensitivity (Yoshikawa et al. 1992, Dong et al. 2010). Forssen analyzed the behavior of the 
FIR filter with cascaded form using the gradient and normalized gradient algorithm (Forssen 1994). Meanwhile, 
the linear phase of the cascade FIR filter has been designed with discrete coefficients recently, and these have 
showed competence in achieving remarkable reduction in implementation cost and number of adders (Dong et 
al. 2011). However, realization using IIR filter is more advantageous, because it uses a lower filter order than 
the FIR filter to produce the same transfer function characteristics. Moreover, using the cascade form for 
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adaptive IIR filters provides an attractive realization because the stability of filter parameterization is easily 
monitored, and filter pole locations are readily obtained from adapted parameters. 

Williamson et al. discussed the structures of cascade IIR filters (Williamson et al. 1995) and classified them 
based on each of their methods. The typical cascade form of the IIR filter uses second-order sections, each with 
two poles and two zeros; this is referred as the standard cascade. This structure is used to simplify sensitivity 
and lower complexity, but has stability problems (Rao 1993). Another structure utilizes an all-pole cascade of 
second-order sections in a series, followed by a tapped delay line to realize the numerator, which is named all-
pole based cascade. Similar to the standard cascade, this structure also possesses stability problems and is of 
lowest complexity. Williamson suggested two structures of cascade-form realization using an all-pole section. 
Williamson constructed the first structure of the all-pole section, called tapped cascade, with the filter output 
from weighted taps taken from the structure interior. The second structure expands the tapped cascade to create 
orthogonal signals at the taps. Therefore, such structures are called orthogonal tapped cascades, and these have 
been compared using two algorithms, namely, the NLMS and Gauss-Newton algorithms. According to analysis, 
the standard cascade is poor in sensitivity complexity and error surface geometry, as well as possesses the 
lowest convergence speed. Meanwhile, the tapped cascade indicates superior performances in all aspects with 
only 3N +1 multiplications of computational complexity.  

                                                                                                                                                                                                          
Parallel structure: 

The parallel form can be constructed using the first or second-order filter sections of the FIR or IIR filter, as 
shown in Figs. 5(a) and (b), respectively, based on the parallel configuration shown in Fig. 6. The transfer 
function of this structure can be represented by the following equation: 
 





M

i
i zHzH

1

)()(  (17) 

 
 

 
Fig. 6: The parallel structure of H(z). 

 
where Hi(z) indicates the transfer function of each filter section, similar to those in Equations (15) and (16). 
In previous works, this structure has been realized with FIR and IIR filters to overcome the problems 

associated with computational costs, convergence speed, and filter stability. The realization of parallel-form FIR 
filter has been examined to improve the FIR filter efficiency, because it can be used to reduce power 
consumption. The design quality of the parallel-form FIR filter has been discussed in (Shang et al. 1998) using 
several algorithms based on LMS. Later, parallel FIR filter implementation with low hardware complexity has 
been proposed in (Chao et al. 2007) using two stages of parallel FIR filter structures. Apparently this method 
could efficiently reduce the number of required multiplications and additions at the cost of delay elements. In 
addition, the proposed method also has small structures and simple control signals which facilitate VLSI 
implementation. On the other hand, this form has been proposed for the implementation on ALE with second-
order IIR filters to enable applications involving detection and enhancement of multiple narrowband signals 
(David 1984). However, the selection of the number of sections, M, and initial condition to the adaptive 
coefficients must be considered to provide rapid convergence rate.  
 
Lattice structure: 

Another method in adaptive filter realization is the lattice structure developed in detail by Gary and Markel 
(Gray et al. 1973) for digital filter realization. Fig. 7 illustrates the configuration of this structure, which is 
constructed using single or two multipliers and delays. In the adaptive filtering method, the value of multipliers 
is chosen using an adaptive algorithm instead of a fixed value. This structure has several advantages: it is easy to 
develop and program as a recursive procedure for filter design, extremely efficient, and requires no 
simultaneous equation solution for tap gains. 

Equations of the two-multiplier lattice-form FIR filter can be expressed as shown in (18) and (19), with its 
configuration shown in Fig. 7(a).  
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    (a) FIR lattice filter                  (b) IIR lattice filter 

 
Fig. 7: Basic block of two-multiplier and a delay of (a) FIR lattice filter and (b) IIR lattice filter. 

 

 
(a) FIR filter 

 

 
(b) IIR filter 

 
Fig. 8: Lattice form realization of M-th (a) FIR lattice filter and (b) IIR lattice filter. 

 
],1[][][ 11   nbknfnf MiMM  (18) 

],[]1[][ 11 nfknbnb MiMM    (19) 
 
M is the filter order, k is the filter coefficient, and i = 1, 2, …, M, with f0 = b0 = k0x[n] and fM = y[n]. 

Meanwhile, Fig. 7(b) shows the lattice-form IIR filter, also called the lattice inverse filter, using two-multipliers. 
The equations derived from this form are represented as follows: 

 
],1[][][ 11   nbknfnf MiMM  (20) 

].1[][][ 11   nbnfknb MMiM  (21) 
 
Figs. 8(a) and (b) show the structures of the M th-order lattice-form FIR and IIR filter, respectively. These 

structures have been implemented as adaptive filters in ALE, as shown in Fig. 2. Stability of the lattice-form IIR 
filter can be ensured if the coefficients fulfill the condition below. 

 
,1ik  where i = 1, 2, …, M. (22) 

The lattice realization has been developed for its superior transient properties and ability to reduce 
sensitivity to quantization errors (Leib et al. 1987). Apart from that, the filter coefficients can be adjusted 
independently without changing the rest of the filter, if additional sections must be added when the lattice filter 
order increases (Friedlander 1980). For ALE implementation, Reddy et al. (Reddy et al. 1981) derived the 
lattice-form FIR filter using RLS algorithm in ALE system for a single sinusoidal signal in broadband noise, 
showing the method’s superiority compared with conventional FIR filters via LMS implementation using a 
suitable delay parameter ∆ value rather than the standard choice. The same method has also been used to 
analyze the ALE steady-state response for a single sinusoidal signal in lowpass noise, with a suitable value of 
delay parameter (Reddy et al. 1981). However, both previous works by Reddy only used single sinusoidal 
signals buried in noise on the lattice structure of FIR-ALE.  

Meanwhile, Cho proposed a simple and efficient means to retrieve single sinusoidal signals corrupted with 
noise using ALE through a second-order lattice-form IIR filter with section coefficients adapted using the 
variation of the Burg algorithm to maintain the poles of the IIR filter in the unit circle, satisfying the filter 
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stability condition when parameters have been converged (Cho et al. 1989). This approach requires less 
computational burden compared with the direct-form IIR filter (Rao et al. 1984) and less sensitive to variation 
of input SNR and input frequencies. Cho also analyzed the method performance in (Cho et al. 1990), and 
investigated the same method using multiple sinusoids. The method requires computational complexity of O(N) 
compared with O(N 2) in other earlier works (Kwan et al. 1989), and the adaptation algorithm is simpler. 
Watanabe et al. (Watanabe et al. 1985) studied the second-order lattice filter to develop a low sensitivity lattice 
filter using minimum multipliers for a single sinusoid signal corrupted by noise. This method is implemented in 
the realization of a fourth-order ALE using two components of the second-order lattice filter (Watanabe et al. 
1994). The center frequency of this fourth-order lattice ALE can be operated using the same adaptive algorithm, 
i.e., LMS as the second-order lattice ALE. However, these early works have only focused on using single 
sinusoidal signals interfered by noise as input signal to the system; certain applications, such as harmonics, 
involve various components in an input signal and cannot benefit from these results. Thus, Leib et al. (Leib et al. 
1987) presented an analytical study of the lattice filter for ALE, but the input signals they used consisted of 
multiple sinusoid signals in white noise. They showed comparable results to conventional transversal ALE filter 
when stochastic gradient is used as adaptive algorithm. Recently, the lattice-form FIR filter has also been 
implemented as a component of noise reduction system in speech enhancement applications presented by 
Takemoto (Takemoto et al. 2010) to improve noisy speech quality and suppress background noise. 

 
Nonlinear adaptive filters: 

The adaptive filters elaborated in previous subsections are mainly categorized to be linear, which estimates 
a desired response using a linear combination of an available set of observables applied to the filter input. Other 
than that, the adaptive filter is considered as nonlinear.  

Gabor (Gabor 1954) first introduced the idea of a nonlinear adaptive filter using a Volterra series. Examples 
of nonlinear adaptive filters are extended Kalman, Volterra, and neural filters. Nonlinear adaptive filters can 
produce better results than conventional linear adaptive filters in noise reduction (Stella et al. 2006). Recently, 
the artificial neural network (ANN) has been widely utilized as a nonlinear adaptive filter in system 
identification (Gupta et al. 1999, Prasad et al. 2003), pattern recognition (Anagun 1998), speech enhancement 
(Knecht et al. 1995, Fah et al. 2000), image processing (Kong et al. 1996, Egmont-Petersen et al. 2002), and 
adaptive beam-former for antenna array applications (Du et al. 2002). A neural network is a massive parallel 
distributed processor made by simple processing units known as neurons. The network has a natural propensity 
for storing experiential knowledge and making it available for use (Vapnik 1998). The basic theory of ANN can 
be found in (Gurney 1997).  

The neural network has also been proposed as an adaptive filter in noise cancellation and adaptive line 
enhancement (Ramli et al. 2012). Magotra et al. (Magotra et al. 1991) used a neural network system for seismic 
discrimination where the network input consists of the ALE filter coefficient. The ALE used is known as the 
adaptive correlation enhancer, which suppresses noise between several distinct polarized phases of the seismic 
signal and enhances the phase onset. In another study, Choi et al. (Choi et al. 2000) used the neural network as 
an adaptive filter in conventional ALE, named as Neural Network-based ALE (NALE) for biomedical 
application, as shown in Fig. 2. ANN is capable of processing nonlinear signals and learning from its 
environment, thus NALE is believed able to cope with the nonlinearity inherent in background noise. This 
system is effective in extracting and enhancing the weak QRS complex from the electrocardiography signal 
corrupted with background noise. Later, Patra et al. (Patra et al. 2005) utilized this system to detect and track 
dim objects in forward-looking infrared imagery. NALE development has also been studied to compare its 
performance with the common linear adaptive filter structure, showing improved noise reduction performance 
(Ramli et al. 2012). Despite its capacity as an alternative method in adaptive filtering, the neural network 
depends largely on the amount of training time and its structural size, ruling it out from many real-time 
applications. 
 
Perspective Of Future Research: 

Widrow et al. (Widrow et al. 1975, McCool et al. 1980) first presented an ALE implementation using the 
LMS to provide real-time potential for many applications. Sinusoids have been separated from broadband noise 
with a relatively simple algorithm, faster convergence speed, and low computational complexity. Consequently, 
the ALE has been investigated and applied for a wide range of applications, including frequency estimation 
(Ramli et al. 2010), speech enhancement (Sasaoka et al. 2009, Takemoto et al. 2010), mobile communication 
(Varma et al. 2004, Wu et al. 2005), biomedical applications (Madhavan 1992, Mitchell 1999, Choi et al. 2000), 
automobiles (HernÃ¡ndez 2003), and image processing (Youlal et al. 1992, Fahmy et al. 2003). Extending the 
use of this system in various other potential applications using better performance adaptive algorithms and 
elegant adaptive filter structures to reduce or eliminate noise contained in the signal would be interesting future 
research. Each algorithm has operational limitations; an intelligent system could be developed whereby the 
parameters describing variations in noise signals may be utilized to select a suitable adaptive algorithm to 
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reduce noise in the target signals. Hence, an optimal algorithm can be selected and used to reduce the noise in 
different signal segments. 
 
Conclusion: 

This paper reviewed existing literature related to adaptive filtering in noise reduction using an adaptive line 
enhancer (ALE) instead of an adaptive noise canceller (ANC). ALE was developed based on the ANC concept, 
whereby both systems may use similar adaptive algorithms and adaptive filter structures. ALE has the advantage 
of employing only a single input signal compared with conventional ANC; therefore, using ALE in parameter 
control and manipulation to obtain a clean output signal is easier than using ANC. The widely used adaptive 
algorithm of ALE is the LMS because of its fast convergence speed and low computational complexity. 
However, various adaptive algorithms have also been developed to obtain better performance compared with 
those of conventional LMS for various applications that need to be relatively faster and low-cost. The review 
discussed structures of adaptive filters that have been implemented to execute adaptive algorithms. Utilizing the 
adaptive filter and adaptive algorithm with low computational complexity, fast convergence speed, and elegant 
filter structural design, alongside intelligent adaptation algorithms, is desirable for future implementation. 
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